分析 根據(jù)題意,利用判別式△≤0得到關(guān)于y的不等式,
再分離常數(shù)k,構(gòu)造函數(shù),利用基本不等式求出k的最大值.
解答 解:∵x2+xy+y2≥k(y-1)對(duì)任意的x恒成立,
化簡得:x2+xy+y2-ky+k≥0對(duì)任意的x恒成立,
∴△=y2-4(y2-ky+k)≤0,
即3y2-4ky+4k≥0,y∈[2,3],
∴4k(y-1)≤3y2,
∴4k≤$\frac{{3y}^{2}}{y-1}$;
設(shè)t=$\frac{{3y}^{2}}{y-1}$,其中y∈[2,3];
則t=3•$\frac{{(y-1)}^{2}+2(y-1)+1}{y-1}$
=3[(y-1)+$\frac{1}{y-1}$+2]≥3•(2$\sqrt{(y-1)•\frac{1}{y-1}}$+2)=12,
當(dāng)且僅當(dāng)y-1=1,即y=2時(shí)“=”成立,
∴4k≤12,解得k≤3,
即k的最大值為3.
故答案為:3.
點(diǎn)評(píng) 本題考查了不等式恒成立問題,也考查了判別式的應(yīng)用問題,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${a_5}^2={a_3}•{a_7}$ | B. | ${a_5}^2={a_1}•{a_9}$ | ||
C. | ${a_n}^2={a_{n-1}}•{a_{n+1}}({n∈{N^*}})$ | D. | ${a_n}^2={a_{n-k}}•{a_{n+k}}({k∈{N^*},n>k>0})$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com