已知a,b,c為互不相等的正數(shù).試比較ab(a+b)+bc(b+c)+ac(a+c)與6abc的大。

答案:
解析:

  解法一:ab(a+b)+bc(b+c)+ac(a+c)-6abc

 。絘2b+ab2+b2c+bc2+a2c+ac2-6abc

  =(a2b+bc2-2abc)+(ab2+ac2-2abc)+(b2c+a2c-2abc)

 。絙(a2+c2-2ac)+a(b2+c2-2bc)+c(b2+a2-2ab)

 。絙(a-c)2+a(b-c)2+c(b-a)2

  ∵a,b,c為互不相等的正數(shù),∴上式>0.

  ∴ab(a+b)+bc(b+c)+ac(a+c)>6abc.

  解法二:

 。

  

  ∵a2+c2-2ac=(a-c)2>0(a≠c),

  ∴(ac>0).

  同理,可得

  ∴上式>16×(2+2+2)=1.

  ∵6abc>0,

  ∴ab(a+b)+bc(b+c)+ac(a+c)>6abc.

  思路分析:要比較兩式大小,可作差后與0比較大小,另考慮到本題兩式均大于零,故也可考慮作商后與1比較大。


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c為互不相等的三個正數(shù),函數(shù)f(x)可能滿足如下性質(zhì):
①f(x-a)為奇函數(shù);②f(x+a)為奇函數(shù);③f(x-b)為偶函數(shù);④f(x+b)為偶函數(shù).
類比函數(shù)y=sinx的對稱中心、對稱軸與周期的關(guān)系,某同學(xué)得出了如下結(jié)論:
(1)若滿足①②,則f(x)的一個周期為4a;(2)若滿足①③,則f(x)的一個周期為4|a-b|;(3)若滿足③④,則f(x)的一個周期為3|a-b|.
其中正確結(jié)論的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知a,b,c為互不相等的三個正數(shù),函數(shù)f(x)可能滿足如下性質(zhì):
①f(x-a)為奇函數(shù);②f(x+a)為奇函數(shù);③f(x-b)為偶函數(shù);④f(x+b)為偶函數(shù).
類比函數(shù)y=sinx的對稱中心、對稱軸與周期的關(guān)系,某同學(xué)得出了如下結(jié)論:
(1)若滿足①②,則f(x)的一個周期為4a;(2)若滿足①③,則f(x)的一個周期為4|a-b|;(3)若滿足③④,則f(x)的一個周期為3|a-b|.
其中正確結(jié)論的個數(shù)是


  1. A.
    0
  2. B.
    1
  3. C.
    2
  4. D.
    3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知a,b,c為互不相等的三個正數(shù),函數(shù)f(x)可能滿足如下性質(zhì):
①f(x-a)為奇函數(shù);②f(x+a)為奇函數(shù);③f(x-b)為偶函數(shù);④f(x+b)為偶函數(shù).
類比函數(shù)y=sinx的對稱中心、對稱軸與周期的關(guān)系,某同學(xué)得出了如下結(jié)論:
(1)若滿足①②,則f(x)的一個周期為4a;(2)若滿足①③,則f(x)的一個周期為4|a-b|;(3)若滿足③④,則f(x)的一個周期為3|a-b|.
其中正確結(jié)論的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、c為互不相等的正數(shù)且abc=1,求證:

++++.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市十一學(xué)校高三(上)暑期檢測數(shù)學(xué)試卷3(文科)(解析版) 題型:選擇題

已知a,b,c為互不相等的三個正數(shù),函數(shù)f(x)可能滿足如下性質(zhì):
①f(x-a)為奇函數(shù);②f(x+a)為奇函數(shù);③f(x-b)為偶函數(shù);④f(x+b)為偶函數(shù).
類比函數(shù)y=sinx的對稱中心、對稱軸與周期的關(guān)系,某同學(xué)得出了如下結(jié)論:
(1)若滿足①②,則f(x)的一個周期為4a;(2)若滿足①③,則f(x)的一個周期為4|a-b|;(3)若滿足③④,則f(x)的一個周期為3|a-b|.
其中正確結(jié)論的個數(shù)是( )
A.0
B.1
C.2
D.3

查看答案和解析>>

同步練習(xí)冊答案