5.用數(shù)學(xué)歸納法證明:1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n}-1}$≤n(n≥1,n∈N*).

分析 直接利用數(shù)學(xué)歸納法證明問題的步驟,證明不等式即可.

解答 證明:(1)當(dāng)n=1時,左邊=1,右邊=1,命題成立.
(2)假設(shè)當(dāng)n=k時,1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{k}-1}$≤k成立
當(dāng)n=k+1時,左邊=1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{k}-1}$+$\frac{1}{{2}^{k}}$+…+$\frac{1}{{2}^{k+1}-1}$
≤k+$\frac{1}{{2}^{k}}$+…+$\frac{1}{{2}^{k+1}-1}$≤k+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}}$+…+$\frac{1}{{2}^{k}}$=k+1,
當(dāng)n=k+1時命題成立.
由(1)(2)可得,對于任意n≥1,n∈N*都成立.

點評 本題考查數(shù)學(xué)歸納法證明含自然數(shù)n的表達式的證明方法,注意n=k+1的證明時,必須用上假設(shè).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若直線2ax+by-2=0(ab>0)平分圓x2+y2-2x-4y-6=0,則$\frac{2}{a}$+$\frac{1}$的最小值是( 。
A.1B.5C.4$\sqrt{2}$D.3+2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某中學(xué)舉行英語演講比賽,如圖是七位評委為某位學(xué)生打出分?jǐn)?shù)的莖葉圖,去掉一個最高分和一個最低分,所剩數(shù)據(jù)的中位數(shù)和方差分別為(  )
A.84,4.84B.84,1.6C.85,4D.86,1.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.與命題“若a∉M,則b∈M”等價的命題是(  )
A.若a∈M,則b∉MB.若b∈M,則a∉MC.若b∉M,則a∉MD.若b∉M,則a∈M

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.過原點作曲線y=ex(其中e為自然對數(shù)的底數(shù))的切線l,若點M($\frac{2-ab}{e}$,a+2b))(a≥0,b≥0)在切線l上,則a+b的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+m}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點O為極點,以x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρ=2cosθ.
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)設(shè)點P(m,0),若直線l與曲線C交于A、B兩點,且|PA|•|PB|=1,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{ax}+3,x>0}\\{\frac{2}{3}{x}^{3}+{x}^{2}+4,x≤0}\end{array}\right.$在[-3,3]上的最大值為$\frac{13}{3}$,則實數(shù)a的取值范圍是( 。
A.[0,$\frac{1}{3}$ln$\frac{4}{3}$]B.[$\frac{1}{3}$ln$\frac{4}{3}$,+∞)C.(-∞,0]D.(-∞,$\frac{1}{3}$ln$\frac{4}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若冪函數(shù)f(x)的圖象經(jīng)過點(3,$\frac{1}{9}$),則log2f(2)=( 。
A.-4B.4C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則φ=(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

同步練習(xí)冊答案