平行六面體ABCD-A1B1C1D1中,AB=4,AD=3,AA1=5,∠BAD=90°,

∠BAA1=∠DAA1=60°,則AC1=(    )

A.85               B.             C.5             D.50

 

【答案】

B

【解析】

試題分析:解:如圖

連接AC,∵AB=4,AD=3,∠BAD=90°,∴AC=5,根據(jù)cos∠A‘AB=cos∠A’AC?cos∠CAB,即 =cos∠A‘AC? ∴∠A'AC=45°則∠C’CA=135°,而AC=5,AA‘=5,根據(jù)余弦定理得AC’=故答案為:B

考點(diǎn):空間中兩點(diǎn)的距離

點(diǎn)評(píng):本題主要考查了體對(duì)角線的求解,以及余弦定理的應(yīng)用,同時(shí)考查了空間想象能力,計(jì)算推理的能力,屬于中檔題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平行六面體ABCD-A1B1C1D1中,AB=2,AA1=2,AD=1,且AB,AD,AA1的夾角都是60° 則
AC1
BD1
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知平行六面體ABCD-A1B1C1D1(底面是平行四邊形的四棱柱)
①求證:平面AB1D1∥平面BDC1;
②若平行六面體ABCD-A1B1C1D1各棱長(zhǎng)相等且AB⊥平面BCC1B1,E為CD的中點(diǎn),AC1∩BD1=0,求證:OE⊥平面ABC1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•南充模擬)平行六面體ABCD-A1B1C1D1的六個(gè)面都是菱形,則點(diǎn)D1在面ACB1上的射影是△ACB1 的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖已知平行六面體ABCD-A′B′C′D′,E、F、G、H分別是棱A′D′、D′C′、C′C和AB的中點(diǎn),求證E、F、G、H四點(diǎn)共面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平行六面體ABCD-A1B1C1D1中,底面是邊長(zhǎng)為1的正方形,若A1AB=∠A1AD=600,且A1A=3,則A1C的長(zhǎng)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案