2.p:x≠2或y≠4是q:x+y≠6的必要不充分條件.(四個選一個填空:充分不必要,必要不充分,充要,既不充分也不必要)

分析 求出¬q與¬p的條件關(guān)系,結(jié)合逆否命題的等價性進行判斷即可.

解答 解:¬p:x=2且y=4,¬q:x+y=6,
當(dāng)x=2且y=4時,x+y=6成立,
當(dāng)x=3,y=3時,滿足x+y=6,但x=2且y=4不成立,
即¬q是¬p的必要不充分條件,
則p是q的必要不充分條件,
故答案為:必要不充分

點評 本題主要考查充分條件和必要條件的判斷,結(jié)合逆否命題的等價性是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-2x+2,x≥a\\ 1-x,x<a\end{array}\right.$(其中a>0),若$f(1)+f(-a)=\frac{5}{2}$,則實數(shù)a的值為$\frac{1}{2}$或$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{2}}}{2}$,左焦點為F(-1,0),過點D(0,2)且斜率為k的直線l交橢圓于A,B兩點.
(1)求橢圓C的標準方程;
(2)在y軸上,是否存在定點E,使$\overrightarrow{AE}•\overrightarrow{BE}$恒為定值?若存在,求出E點的坐標和這個定值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若半徑為2的球O內(nèi)切于一個正三棱柱ABC-A1B1C1中,則該三棱柱的體積為48$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知不過第二象限的直線l:ax-y-4=0與圓x2+(y-1)2=5相切.
(1)求直線l的方程;
(2)若直線l1過點(3,-1)且與直線l平行,直線l2與直線l1關(guān)于直線y=1對稱,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}中,a1=2,a2=3,其前n項和Sn滿足an+1+Sn-1=Sn+1(n≥2,n∈N*).
(1)求證:數(shù)列{an}為等差數(shù)列,并求{an}的通項公式;
(2)設(shè)Tn為數(shù)列$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n項和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若數(shù)列{an}滿足an=$\frac{{a}_{n-1}}{{a}_{n-2}}$(n∈N*,n≥3),a1=2,a5=$\frac{1}{3}$,則a2016等于$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若0≤θ<2π且同時滿足cosθ<sinθ和tanθ<sinθ,則θ的取值范圍是(  )
A.($\frac{π}{2}$,π)B.($\frac{π}{4}$,$\frac{3}{4}$π)C.(π,$\frac{3}{2}$π)D.($\frac{3}{4}$π,$\frac{5}{4}$π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下面四個條件中,使x>y成立的充分不必要的條件是( 。
A.$\frac{1}{y}>\frac{1}{x}>0$B.x>y-1C.x2>y2D.x3>y3

查看答案和解析>>

同步練習(xí)冊答案