【題目】設(shè)點(diǎn)A是拋物線上到直線的距離最短的點(diǎn),點(diǎn)B是拋物線上異于點(diǎn)A的一點(diǎn),直線AB與l交于P,過點(diǎn)P作y軸的平行線交拋物線于點(diǎn)C.
(1)求點(diǎn)A的坐標(biāo);
(2)求證:直線BC過定點(diǎn);
(3)求面積的最小值.
【答案】(1)
(2)見解析.
(3)
【解析】
(1)根據(jù)拋物線方程,設(shè),得其到直線的距離,再用二次函數(shù)求解.
(2)設(shè),表示直線的坶與聯(lián)立,求得,則,可得直線的直線方程,整理得:可得定點(diǎn);
(3)根據(jù)直線的過定點(diǎn),設(shè)其方程為,與拋物線方程聯(lián)立可得,由弦長(zhǎng)公式得 ,點(diǎn)A到線的距離,則由求解.
(1)設(shè),則,當(dāng)取得最小值,則;
(2)設(shè),可得聯(lián)立
得,
所以
所以,
所以直線,
整理得:,
則過定點(diǎn);
(3)可設(shè)直線BC為,與拋物線聯(lián)立可得,
設(shè),,
則,
又因?yàn)辄c(diǎn)A到直線BC的距離,
所以面積為,
當(dāng)時(shí),此時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)低碳綠色出行,某市推出“新能源分時(shí)租賃汽車”,其中一款新能源分時(shí)租賃汽車,每次租車收費(fèi)得標(biāo)準(zhǔn)由以下兩部分組成:(1)根據(jù)行駛里程數(shù)按1元/公里計(jì)費(fèi);(2)當(dāng)租車時(shí)間不超過40分鐘時(shí),按0.12元/分鐘計(jì)費(fèi);當(dāng)租車時(shí)間超過40分鐘時(shí),超出的部分按0.20元/分鐘計(jì)費(fèi);(3)租車時(shí)間不足1分鐘,按1分鐘計(jì)算.已知張先生從家里到公司的距離為15公里,每天租用該款汽車上下班各一次,且每次租車時(shí)間t20,60(單位:分鐘).由于堵車,紅綠燈等因素,每次路上租車時(shí)間t是一個(gè)隨即變量.現(xiàn)統(tǒng)計(jì)了他50次路上租車時(shí)間,整理后得到下表:
租車時(shí)間t(分鐘) | [20,30] | (30,40] | (40,50] | (50,60] |
頻數(shù) | 2 | 18 | 20 | 10 |
將上述租車時(shí)間的頻率視為概率.
(1)寫出張先生一次租車費(fèi)用y(元)與租車時(shí)間t(分鐘)的函數(shù)關(guān)系式;
(2)公司規(guī)定,員工上下班可以免費(fèi)乘坐公司接送車,若不乘坐公司接送車的每月(按22天計(jì)算)給800元車補(bǔ).從經(jīng)濟(jì)收入的角度分析,張先生上下班應(yīng)該選擇公司接送車,還是租用該款新能源汽車?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解居民消費(fèi)情況,某地區(qū)調(diào)查了10000戶小家庭的日常生活平均月消費(fèi)金額,根據(jù)所得數(shù)據(jù)繪制了樣本頻率分布直方圖,如圖所示,每戶小家庭的平均月消費(fèi)金額均不超過9千元,其中第六組第七組第八組尚未繪制完成,但是已知這三組的頻率依次成等差數(shù)列,且第六組戶數(shù)比第七組多500戶,
(1)求第六組第七組第八組的戶數(shù),并補(bǔ)畫圖中所缺三組的直方圖;
(2)若定義月消費(fèi)在3千元以下的小家庭為4類家庭,定義月消費(fèi)在3千元至6千無的小家庭為B類家庭,定義月消費(fèi)6千元以上的小家庭為C類家庭,現(xiàn)從這10000戶家庭中按分層抽樣的方法抽取80戶家庭召開座談會(huì),間A,B,C各層抽取的戶數(shù)分別是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校組織的一次教師招聘共分筆試和面試兩個(gè)環(huán)節(jié),筆試環(huán)節(jié)共有20名大學(xué)畢業(yè)生參加,其中男、女生的比例恰好為,其成績(jī)的莖葉圖如圖所示.假設(shè)成績(jī)?cè)?0分以上的考生可以進(jìn)入面試環(huán)節(jié).
(1)試比較男、女兩組成績(jī)平均分的大小,并求出女生組的方差;
(2)從男、女兩組可以進(jìn)入面試環(huán)節(jié)的考生中分別任取1人,求兩人分差不小于3分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,用四種不同顏色給圖中的A,B,C,D,E,F六個(gè)點(diǎn)涂色,要求每個(gè)點(diǎn)涂一種顏色,且圖中每條線段的兩個(gè)端點(diǎn)涂不同顏色,則不同的涂色方法用
A.288種B.264種C.240種D.168種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A與圓相切,且與圓相內(nèi)切,記圓心的軌跡為曲線.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)Q為曲線C上的一個(gè)不在軸上的動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),過點(diǎn)作OQ的平行線交曲線C于M,N兩個(gè)不同的點(diǎn), 求△QMN面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以為頂點(diǎn)的五面體中,面為正方形,,,且二面角與二面角都是.
(1)證明:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex-m(x+1)+1(m∈R).
(1)若函數(shù)f(x)的極小值為1,求實(shí)數(shù)m的值;
(2)當(dāng)x≥0時(shí),不等式恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com