10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x,(x<1)}\\{{e}^{x},(x≥1)}\end{array}\right.$,若函數(shù)g(x)=f(x)-kx恰有一個零點(diǎn),則k的取值范圍是( 。
A.(e,+∞)B.(-∞,e)C.(-∞,$\frac{1}{e}$)D.[0,e)

分析 利用函數(shù)的零點(diǎn),轉(zhuǎn)化為方程根,轉(zhuǎn)化為兩個函數(shù)的圖象的交點(diǎn),求出一個零點(diǎn),然后求解k的范圍即可.

解答 解:∵函數(shù)函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x,(x<1)}\\{{e}^{x},(x≥1)}\end{array}\right.$,
∴f(0)=0,
∴x=0是函數(shù)y=f(x)-kx的一個零點(diǎn),
函數(shù)g(x)=f(x)-kx恰有一個零點(diǎn),可得:y=f(x)與y=kx的圖象如圖:
當(dāng)x<1時,由f(x)=kx,兩個函數(shù)只有一個交點(diǎn),則k≤1;
當(dāng)x≥1時,y=ex,是增函數(shù),x=1時,函數(shù)的最小值為:e,
可知k<e.
f'(x)=ex∈(1,+∞),
∴要使函數(shù)y=f(x)-kx在x>0時有一個零點(diǎn),
則k>1,
∴k>1,
即實(shí)數(shù)k的取值范圍是(-∞,e),
故選:B.

點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)零點(diǎn)及零點(diǎn)的個數(shù),二次函數(shù)的圖象和性質(zhì),指數(shù)型函數(shù)的圖象和性質(zhì),難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知F1,(-1,0),F(xiàn)2(1,0)為平面內(nèi)的兩個定點(diǎn),動點(diǎn)P滿足|PF1|+|PF2|=2$\sqrt{2}$,記點(diǎn)P的軌跡為曲線Γ.
(Ⅰ)求曲線Γ的方程;
(Ⅱ)設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A,B,C是曲線Γ上的不同三點(diǎn),且$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$.試探究:直線AB與OC的斜率之積是否為定值?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.邊長為4的菱形ABCD中,滿足∠DCB=60°,點(diǎn)E,F(xiàn)分別是邊CD和CB的中點(diǎn),AC交BD于點(diǎn)H,AC交EF于點(diǎn)O,沿EF將△CEF翻折到△PEF的位置,使平面PEF⊥平面ABD,連接PA,PB,PD,得到如圖所示的五棱錐P-ABFED.
(Ⅰ)求證:BD⊥PA;
(Ⅱ)求點(diǎn)D到平面PBF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知拋物線E:y2=2px(p>0)的準(zhǔn)線與x軸交于點(diǎn)K,過點(diǎn)K作圓(x-5)2+y2=9的兩條切線,切點(diǎn)為M,N,|MN|=3$\sqrt{3}$
(1)求拋物線E的方程;
(2)設(shè)A,B是拋物線E上分別位于x軸兩側(cè)的兩個動點(diǎn),且$\overrightarrow{OA}•\overrightarrow{OB}=\frac{9}{4}$(其中O為坐標(biāo)原點(diǎn)).
①求證:直線AB必過定點(diǎn),并求出該定點(diǎn)Q的坐標(biāo);
②過點(diǎn)Q作AB的垂線與拋物線交于G,D兩點(diǎn),求四邊形AGBD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.三棱柱ABC-A1B1C1的底面是直角三角形,側(cè)棱垂直于底面,面積最大的側(cè)面是正方形,且正方形的中心是該三棱柱的外接球的球心,若外接球的表面積為8π,則三棱柱ABC-A1B1C1的體積的最大值為( 。
A.2B.3C.$2\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 $\left\{\begin{array}{l}x=\sqrt{2}+2t\\ y=-\sqrt{2}+t\end{array}$(t為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2的方程為ρ=$\frac{2}{{\sqrt{1+3{{sin}^2}θ}}}$.
(Ⅰ)求曲線C1、C2的直角坐標(biāo)方程;
(Ⅱ)若A、B分別為曲線C1、C2上的任意點(diǎn),求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=lnx-kx+1(k為常數(shù)),函數(shù)g(x)=xex-ln($\frac{4}{a}$x+1),(a為常數(shù),且a>0).
(Ⅰ)若函數(shù)f(x)有且只有1個零點(diǎn),求k的取值的集合;
(Ⅱ)當(dāng)(Ⅰ)中的k取最大值時,求證:ag(x)-2f(x)>2(lna-ln2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某幾何體的三視圖如圖所示,其中俯視圖中半圓半徑為$\sqrt{2}$,則該幾何體的體積是(  )
A.$2π+8\sqrt{2}+2$B.$2π+8\sqrt{2}+1$C.$π+8\sqrt{2}+1$D.$π+8\sqrt{2}+2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知f(x)=$\frac{a}{x}$+lnx(a∈R).
(1)當(dāng)a=3時,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)研究y=f(x)在定義域內(nèi)的單調(diào)性;
(3)如果f(x)≥0在定義域內(nèi)恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案