13.已知2弧度的圓心角所對的半徑長為2,那么這個(gè)圓心角所對的弧長是( 。
A.2B.sin2C.$\frac{2}{sin1}$D.4

分析 利用弧長公式,即可得到結(jié)論

解答 解:圓心角所對的弧長l=2×2=4.
故選:D.

點(diǎn)評 本題考查弧長公式,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)$f(x)=[{\frac{x+1}{2}}]-[{\frac{x}{2}}](x∈N)$的值域?yàn)閧0,1}.(其中[x]表示不大于x的最大整數(shù),例如[3.15]=3,[0.7]=0.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)中,F(xiàn)1、F2是其左、右焦點(diǎn),A是其上頂點(diǎn),且∠F1AF2=60°.
(1)求橢圓C的離心率;
(2)經(jīng)過橢圓C的右焦點(diǎn)F2作傾斜角為45°的直線l,交橢圓C于M,N兩點(diǎn),且滿足$\overrightarrow{M{F}_{1}}•\overrightarrow{N{F}_{1}}$=-2,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖所示,已知單位正方體ABCD-A′B′C′D′,E是正方形BCC′B′的中心.
(1)求AE與下底面所成角的大;
(2)求異面直線AE與DD′所成的角的大小.
(理科)(3)求二面角E-AB-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知等差數(shù)列{an}滿足:a1=2,且a22=a1a5
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記Sn為數(shù)列{an}的前n項(xiàng)和,是否存在正整數(shù)n,使得Sn>60n+800?若存在,求n的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.將245°化為弧度是$\frac{49π}{36}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在等差數(shù)列{an}中,a7=8,前7項(xiàng)和S7=42,則其公差是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.sin17°•cos43°+sin73°•sin43°等于$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)y=f(x)是定義域?yàn)镽的偶函數(shù),當(dāng)x≥0時(shí),f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}+1,(x>2)}\\{\frac{5}{16}{x}^{2},(0≤x≤2)}\end{array}\right.$,若關(guān)于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且僅有6個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( 。
A.[-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1]B.(-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1)C.(-$\frac{5}{2}$,-$\frac{9}{4}$)D.(-$\frac{9}{4}$,-1)

查看答案和解析>>

同步練習(xí)冊答案