已知O為坐標原點,sin2x+a)(x∈R,a∈R,a是常數(shù)),若y=

(1)求y關于x的函數(shù)解析式f(x);

(2)若x∈[0,]時,f(x)的最大值為2,求a的值并指出f(x)的單調(diào)區(qū)間.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知三點A(cosα,sinα),B(cosβ,sinβ),C(cosγ,sinγ),若向量
OA
+K
OB
+(2-K)
OC
=
0
(k為常數(shù)且0<k<2,O為坐標原點,S△BOC表示△BOC的面積)
(1)求cos(β-γ)的最值及相應的k的值;
(2)求cos(β-γ)取得最大值時,S△BOC:S△AOC:S△AOB

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:y=kx+1與圓C:(x-2)2+(y-3)2=1相交于A,B兩點.
(1)求弦AB的中點M的軌跡方程;
(2)若O為坐標原點,S(k)表示△OAB的面積,f(k)=[S(k)]2+
3k2+1
,求f(k)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•成都三模)已知O為坐標原點,點E、F的坐標分別為(-
2
,0)、(
2
,0),點A、N滿足
AE
=2
3
ON
=
1
2
(
OA
+
OF
)
,過點N且垂直于AF的直線交線段AE于點M,設點M的軌跡為C.
(1)求軌跡C的方程;
(2)若軌跡C上存在兩點P和Q關于直線l:y=k(x+1)(k≠0)對稱,求k的取值范圍;
(3)在(2)的條件下,設直線l與軌跡C交于不同的兩點R、S,對點B(1,0)和向量a=(-
3
,3k),求
BR
BS
-|a|2
取最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知三點A(cosα,sinα),B(cosβ,sinβ),C(cosγ,sinγ),若向量數(shù)學公式(k為常數(shù)且0<k<2,O為坐標原點,S△BOC表示△BOC的面積)
(1)求cos(β-γ)的最值及相應的k 的值;
(2)求cos(β-γ)取得最大值時,S△BOC:S△AOC:S△AOB

查看答案和解析>>

科目:高中數(shù)學 來源:2008年四川省成都市高考數(shù)學三模試卷(文科)(解析版) 題型:解答題

已知O為坐標原點,點E、F的坐標分別為(,0)、(,0),點A、N滿足,過點N且垂直于AF的直線交線段AE于點M,設點M的軌跡為C.
(1)求軌跡C的方程;
(2)若軌跡C上存在兩點P和Q關于直線l:y=k(x+1)(k≠0)對稱,求k的取值范圍;
(3)在(2)的條件下,設直線l與軌跡C交于不同的兩點R、S,對點B(1,0)和向量a=(,3k),求取最大值時直線l的方程.

查看答案和解析>>

同步練習冊答案