如圖,已知橢圓的右焦點(diǎn)為,點(diǎn)是橢圓上任意一點(diǎn),圓是以為直徑的圓.
(1)若圓過(guò)原點(diǎn),求圓的方程; 
(2)寫(xiě)出一個(gè)定圓的方程,使得無(wú)論點(diǎn)在橢圓的什么位置,該定圓總與圓相切,請(qǐng)寫(xiě)出你的探究過(guò)程.

(1);(2).

解析試題分析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b3/c/rfryx2.png" style="vertical-align:middle;" />是圓的直徑,所以當(dāng)圓過(guò)原點(diǎn)時(shí),一定有,由此可確定點(diǎn)的位置并進(jìn)一步求出圓的標(biāo)準(zhǔn)方程;
(2)設(shè)圓M的半徑為,連結(jié),顯然有
根據(jù)橢圓的標(biāo)準(zhǔn)方程,
所以,從而找到符合條件的定圓.
解:(1)解法一:因?yàn)閳A過(guò)原點(diǎn),所以,所以是橢圓的短軸頂點(diǎn),的坐標(biāo)是,于是點(diǎn)的坐標(biāo)為,       
易求圓的半徑為
所以圓的方程為       6分
解法二:設(shè),因?yàn)閳A過(guò)原點(diǎn),所以
所以,所以,所以點(diǎn)
于是點(diǎn)的坐標(biāo)為,易求圓的半徑
所以圓的方程為        6分
(2)以原點(diǎn)為圓心,5為半徑的定圓始終與圓相內(nèi)切,定圓的方程為     8分
探究過(guò)程為:設(shè)圓的半徑為,定圓的半徑為,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/74/6/2imqi.png" style="vertical-align:middle;" />,
所以當(dāng)原點(diǎn)為定圓圓心,半徑時(shí),定圓始終與圓相內(nèi)切.  (13分)
考點(diǎn):1、橢圓的定義與標(biāo)準(zhǔn)方程;2、圓的定義與標(biāo)準(zhǔn)方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知曲線E上任意一點(diǎn)P到兩個(gè)定點(diǎn)F1(-,0)和F2(,0)的距離之和為4.
(1)求曲線E的方程;
(2)設(shè)過(guò)點(diǎn)(0,-2)的直線l與曲線E交于C、D兩點(diǎn),且·=0(O為坐標(biāo)原點(diǎn)),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的一個(gè)焦點(diǎn)為,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若動(dòng)點(diǎn)為橢圓外一點(diǎn),且點(diǎn)到橢圓的兩條切線相互垂直,求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

的切線與x軸正半軸,y軸正半軸圍成一個(gè)三角形,當(dāng)該三角形面積最小時(shí),切點(diǎn)為P(如圖),雙曲線過(guò)點(diǎn)P且離心率為.
(1)求的方程;
(2)橢圓過(guò)點(diǎn)P且與有相同的焦點(diǎn),直線過(guò)的右焦點(diǎn)且與交于A,B兩點(diǎn),若以線段AB為直徑的圓心過(guò)點(diǎn)P,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,點(diǎn)到點(diǎn)的距離比它到軸的距離多1,記點(diǎn)的軌跡為.
(1)求軌跡為的方程
(2)設(shè)斜率為的直線過(guò)定點(diǎn),求直線與軌跡恰好有一個(gè)公共點(diǎn),兩個(gè)公共點(diǎn),三個(gè)公共點(diǎn)時(shí)的相應(yīng)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線C:的焦點(diǎn)為F,直線與y軸的交點(diǎn)為P,與C的交點(diǎn)為Q,且.
(1)求C的方程;
(2)過(guò)F的直線與C相交于A,B兩點(diǎn),若AB的垂直平分線與C相較于M,N兩點(diǎn),且A,M,B,N四點(diǎn)在同一圓上,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓經(jīng)過(guò)點(diǎn)
(1)求橢圓的方程及其離心率;
(2)過(guò)橢圓右焦點(diǎn)的直線(不經(jīng)過(guò)點(diǎn))與橢圓交于兩點(diǎn),當(dāng)的平分線為 時(shí),求直線的斜率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(14分)(2011•廣東)在平面直角坐標(biāo)系xOy中,直線l:x=﹣2交x軸于點(diǎn)A,設(shè)P是l上一點(diǎn),M是線段OP的垂直平分線上一點(diǎn),且滿足∠MPO=∠AOP.
(1)當(dāng)點(diǎn)P在l上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡E的方程;
(2)已知T(1,﹣1),設(shè)H是E上動(dòng)點(diǎn),求|HO|+|HT|的最小值,并給出此時(shí)點(diǎn)H的坐標(biāo);
(3)過(guò)點(diǎn)T(1,﹣1)且不平行與y軸的直線l1與軌跡E有且只有兩個(gè)不同的交點(diǎn),求直線l1的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(2011•山東)在平面直角坐標(biāo)系xOy中,已知橢圓.如圖所示,斜率為k(k>0)且不過(guò)原點(diǎn)的直線l交橢圓C于A,B兩點(diǎn),線段AB的中點(diǎn)為E,射線OE交橢圓C于點(diǎn)G,交直線x=﹣3于點(diǎn)D(﹣3,m).
(1)求m2+k2的最小值;
(2)若|OG|2=|OD|?|OE|,
(i)求證:直線l過(guò)定點(diǎn);
(ii)試問(wèn)點(diǎn)B,G能否關(guān)于x軸對(duì)稱(chēng)?若能,求出此時(shí)△ABG的外接圓方程;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案