4.計算:${log_5}25+lg\frac{1}{100}+ln\sqrt{e}$=$\frac{1}{2}$.

分析 直接利用對數(shù)的運算法則化簡求解即可.

解答 解:${log_5}25+lg\frac{1}{100}+ln\sqrt{e}$=2-2+$\frac{1}{2}$=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點評 本題考查對數(shù)運算法則的應(yīng)用,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知AB是單位圓上的動點,且|AB|=$\sqrt{3}$、單位圓的圓心為O,則$\overrightarrow{OA}•\overrightarrow{OB}$=( 。
A.-$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.以下四個命題中,正確的個數(shù)是(  )
①命題“若f(x)是周期函數(shù),則f(x)是三角函數(shù)”的否命題是“若f(x)是周期函數(shù),
則f(x)不是三角函數(shù)”
②命題“存在x∈R,x2-x>0”的否定是“對于任意x∈R,x2-x>0”;
③在△ABC中,“sinA>sinB”是“A>B”成立的充要條件.
④若函數(shù)f(x)在(2015,2017)上有零點,則一定有f(2015)•f(2017)<0.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)集合P={x|x2+2x-8≤0},$Q=\{y|y={(\frac{1}{3})^x},x∈(-2,1)\}$,則P∩Q=(  )
A.$(-4,\frac{1}{9})$B.$(\frac{1}{9},2]$C.$(\frac{1}{3},2]$D.$(\frac{1}{3},2)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.2016年3月“兩會”期間,有代表提出適當(dāng)下調(diào)“五險一金”的繳存比例,現(xiàn)擬從某工廠職工中抽取20名代表調(diào)查對這一提案的態(tài)度,已知該廠青年,中年,老年職工人數(shù)分別為350,500,150,按分層抽樣的方法,應(yīng)從青年職工中抽取的人數(shù)為(  )
A.5B.6C.7D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)集合A={x|x2+x-2<0},B={-1,0,3},則A∩B=(  )
A.{-1,0}B.{0,3}C.{-1,3}D.{-1,0,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若實數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ 3x-y-3≤0\\ x+2y-2≥0\end{array}\right.$,且z=a|x-2|+y的最小值為1,則a的值$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)在區(qū)間[2,4]上是增函數(shù),且f(2)=-1,f(4)=1,則f(3)=0,f(x)的一個單調(diào)遞減區(qū)間是[0,2](寫出一個即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.($\frac{3}{x}$+x)(2-$\sqrt{x}$)6展開式中x2的系數(shù)是243.

查看答案和解析>>

同步練習(xí)冊答案