((本小題滿分14分)

已知橢圓的離心率為,且橢圓上一點(diǎn)與橢圓的兩個(gè)焦點(diǎn)構(gòu)成的三角形周長(zhǎng)為

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),且以為直徑的圓過(guò)橢圓的右頂點(diǎn),

面積的最大值.

 

【答案】

解:(Ⅰ)因?yàn)闄E圓上一點(diǎn)和它的兩個(gè)焦點(diǎn)構(gòu)成的三角形周長(zhǎng)為,

所以,                                      ……………1分

又橢圓的離心率為,即,所以,        ………………2分

所以.                                        ………………4分

所以,橢圓的方程為.                      ………………5分

(Ⅱ)方法一:不妨設(shè)的方程,則的方程為.

,            ………………6分

設(shè),,因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052220233665624993/SYS201205222025472500149748_DA.files/image019.png">,所以, …………7分

同理可得,                                     ………………8分

所以,,        ………………10分

,                      ………………12分

設(shè),則,      ………………13分

當(dāng)且僅當(dāng)時(shí)取等號(hào),所以面積的最大值為.     ………………14分

方法二:不妨設(shè)直線的方程.

消去,       ………………6分

設(shè),,

則有.    ①                  ………………7分

因?yàn)橐?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052220233665624993/SYS201205222025472500149748_DA.files/image030.png">為直徑的圓過(guò)點(diǎn),所以 .

,

.                                ………………8分

代入上式,

.

將 ① 代入上式,解得 (舍).                ………………10分

所以(此時(shí)直線經(jīng)過(guò)定點(diǎn),與橢圓有兩個(gè)交點(diǎn)),

所以

.    ……………12分

設(shè),

.

所以當(dāng)時(shí),取得最大值.                 ……………14分

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡(jiǎn)f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時(shí),求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對(duì)一應(yīng)季商品過(guò)去20天的銷(xiāo)售價(jià)格及銷(xiāo)售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷(xiāo)售價(jià)格(單位:元)為,第天的銷(xiāo)售量為,已知該商品成本為每件25元.

(Ⅰ)寫(xiě)出銷(xiāo)售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤(rùn);

(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案