有一個3×4×5的長方體,它的六個面上均涂上顏色.現(xiàn)將這個長方體鋸成60個1×1×1的小正方體,從這些小正方體中隨機地任取1個,設小正方體涂上顏色的面數(shù)為ξ.
(1)求ξ=0的概率;
(2)求ξ的分布列和數(shù)學期望.

解:(1)60個1×1×1的小正方體中,沒有涂上顏色的有6個,…(3分)
(2)ξ的取值可以是0,1,2,3
;;…(7分)
分布列
ξ0123
p
…(10分)
Eξ=0×+1×+2×+3×=…(12分)
分析:(1)60個1×1×1的小正方體中,沒有涂上顏色的有6個,故可求ξ=0的概率;
(2)ξ的取值可以是0,1,2,3,求出相應的概率,可得分布列,進而可求數(shù)學期望.
點評:本題考查離散型隨機變量的概率分布與期望,解題的關鍵是明確ξ的取值及其含義.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1)一本書分別由1,2,3,4,5,6這些章組成,這些章之間存在著以下這些關系:學完第一章之后才能學后面的這幾章,第6章只能在最后學習,第3章要在第2章學完之后才能學習,第5章要在第4章學完之后才能學習.畫出這本書中各章的邏輯關系框圖.
(2)有一道試題:有一個三角形,它的邊長分別為6cm,8cm,10cm,請判斷三角形的形狀.
同學米虎的答案:
由勾股定理知,凡是直角三角形都是斜邊的平方等于其他兩邊平方之和,這個三角形的一邊的平方等于其他兩邊平方之和,所以,這個三角形是直角三角形.
請問:他的推理正確嗎?如不正確,請寫出正確的推理.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分,請在答題紙指定區(qū)域內(nèi)作答,解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點P作圓O的兩條切線,切點分別為A,B,
AB與OP交于點M,設CD為過點M且不過圓心O的一條弦,
求證:O,C,P,D四點共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對應的一個特征向量e1=[
 
1
1
],并且矩陣M對應的變換將點(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標系與參數(shù)方程)
在極坐標系中,曲線C的極坐標方程為p=2
2
sin(θ-
π
4
),以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線l被曲線C所截得的弦長.
D.選修4-5(不等式選講)
已知實數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某研究機構為了研究人的腳的大小與身高之間的關系,隨機抽測了20人,得到如下數(shù)據(jù):
序      號 1 2 3 4 5 6 7 8 9 10
身高x(厘米) 192 164 172 177 176 159 171 166 182 166
腳長y( 碼 ) 48 38 40 43 44 37 40 39 46 39
序      號 11 12 13 14 15 16 17 18 19 20
身高x(厘米) 169 178 167 174 168 179 165 170 162 170
腳長y( 碼 ) 43 41 40 43 40 44 38 42 39 41
(Ⅰ)若“身高大于175厘米”的為“高個”,“身高小于等于175厘米”的為“非高個”;“腳長大于42碼”的為“大腳”,“腳長小于等于42碼”的為“非大腳”.請根據(jù)上表數(shù)據(jù)完成下面的2×2聯(lián)黑框列表:
高  個 非高個 合  計
大  腳
非大腳 12
合  計 20
(Ⅱ) 若按下面的方法從這20人中抽取1人來核查測量數(shù)據(jù)的誤差:將一個標有數(shù)字1,2,3,4,5,6的正六面體骰子連續(xù)投擲兩次,記朝上的兩個數(shù)字的乘積為被抽取人的序號.試求:
①抽到12號的概率;②抽到“無效序號(超過20號)”的概率.
(Ⅲ) 根據(jù)題(1)中表格的數(shù)據(jù),若按99.5%的可靠性要求,能否認為腳的大小與身高之間有關系?(可用數(shù)據(jù)482=2304、582=3364、682=4624、6×14×7×13=7644、5×1×2×12=120)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某研究機構為了研究人的腳的大小與身高之問的關系,隨機抽測了20人,得到如下數(shù)據(jù):
序號 1 2 3 4 5 6 7 8 9 10
身高x(厘米) 192 164 172 177 176 159 171 166 182 166
腳長y(碼) 48 38 40 43 44 37 40 39 46 39
序號 11 12 13 14 15 16 17 18 19 20
身高x(厘米) 169 178 167 174 168 179 165 170 162 170
腳長y(碼) 43 41 40 43 40 44 38 42 39 41
(Ⅰ)若“身高大于l75厘米”的為“高個”,“身高小于等于175厘米”的為“非高個”;“腳長大于42碼”的為“大腳”,“腳長小于等于42碼”的為“非大腳”.請根據(jù)上表數(shù)據(jù)完成下面的2×2列聯(lián)表:
    高個   非高個     合計
大腳
非大腳     12
合計     20
(Ⅱ)根據(jù)題(I)中表格的數(shù)據(jù),若按99%的可靠性要求,能否認為腳的大小與身高之間有關系?
(Ⅲ)若按下面的方法從這20人中抽取1人來核查測量數(shù)據(jù)的誤差:將一個標有數(shù)字1,2,3,4,5,6的正六面體骰子連續(xù)投擲兩次,記朝上的兩個數(shù)字的乘積為被抽取人的序號.試求:①抽到12號的概率;②抽到“無效序號(超過20號)”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆福建省浦城縣第一學期高二數(shù)學期末考試卷(文科) 題型:解答題

某研究機構為了研究人的腳的大小與身高之間的關系,隨機抽測了20人,得到如下數(shù)據(jù):

序      號

1

2

3

4

5

6

7

8

9

10

身高x(厘米)

192

164

172

177

176

159

171

166

182

166

腳長y( 碼 )

48

38

40

43

44

37

40

39

46

39

序      號

11

12

13

14

15

16

17

18

19

20

身高x(厘米)

169

178

167

174

168

179

165

170

162

170

腳長y( 碼 )

43

41

40

43

40

44

38

42

39

41

(Ⅰ)若“身高大于175厘米”的為“高個”,“身高小于等于175厘米”的為“非高個”;“腳長大于42碼”的為“大腳”,“腳長小于等于42碼”的為“非大腳”.請根據(jù)上表數(shù)據(jù)完成下面的聯(lián)黑框列表: (3分)

 

高  個

非高個

合  計

大  腳

 

 

 

非大腳

 

12

 

合  計

 

 

20

   (Ⅱ) 若按下面的方法從這20人中抽取1人來核查測量數(shù)據(jù)的誤差:將一個標有數(shù)字1,2,3,4,5,6的正六面體骰子連續(xù)投擲兩次,記朝上的兩個數(shù)字的乘積為被抽取人的序號.試求:

①抽到12號的概率;②抽到“無效序號(超過20號)”的概率. (6分)

(Ⅲ) 根據(jù)題(1)中表格的數(shù)據(jù),若按99.5%的可靠性要求,能否認為腳的大小與身高之間有關系?(可用數(shù)據(jù)482=2304、582=3364 、682=4624 、 、 )(5分)

 

查看答案和解析>>

同步練習冊答案