精英家教網 > 高中數學 > 題目詳情

已知f(x)=-x-x3,x1,x2,x3∈R,則f(x1)+f(x2)+f(x3)的值


  1. A.
    一定小于0
  2. B.
    等于0
  3. C.
    一定大于0
  4. D.
    無法確定
D
分析:函數f(x)=-x-x3為奇函數,且為單調減函數,根據x1,x2,x3∈R,可得f(x1)+f(x2)+f(x3)的值無法確定.
解答:函數f(x)=-x-x3為奇函數,且為單調減函數
∵x1,x2,x3∈R
∴f(x1)+f(x2)+f(x3)的值無法確定
故選D.
點評:本題考查函數的性質,考查函數值的計算,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f (x)、g(x)都是定義在R上的函數,如果存在實數m、n使得h (x)=m f(x)+ng(x),那么稱h (x)為f (x)、g(x)在R上生成的函數.設f (x)=x2+x、g(x)=x+2,若h (x)為f (x)、g(x)在R上生成的一個偶函數,且h(1)=3,則函數h (x)=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是定義在R上的奇函數,當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數f(x)在區(qū)間(-∞,0)上的單調性;
(Ⅲ)若k=
1
3
,設g(x)是函數f(x)在區(qū)間[0,+∞)上的導函數,問是否存在實數a,滿足a>1并且使g(x)在區(qū)間[
1
2
,a]
上的值域為[
1
a
,1]
,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=
x
+
1
x
+
x+
1
x
+1
g(x)=
x
+
1
x
-
x+
1
x
+1

(1)分別求f(x)、g(x)的定義域,并求f(x)•g(x)的值;(2)求f(x)的最小值并說明理由;
(3)若a=
x2+x+1
 , b=t
x
 , c=x+1
,是否存在滿足下列條件的正數t,使得對于任意的正
數x,a、b、c都可以成為某個三角形三邊的長?若存在,則求出t的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知f(x)是定義在R上的奇函數,當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數f(x)在區(qū)間(-∞,0)上的單調性;
(Ⅲ)若數學公式,設g(x)是函數f(x)在區(qū)間[0,+∞)上的導函數,問是否存在實數a,滿足a>1并且使g(x)在區(qū)間數學公式上的值域為數學公式,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2011年高三數學第一輪基礎知識訓練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數,當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數f(x)在區(qū)間(-∞,0)上的單調性;
(Ⅲ)若,設g(x)是函數f(x)在區(qū)間[0,+∞)上的導函數,問是否存在實數a,滿足a>1并且使g(x)在區(qū)間上的值域為,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案