【題目】某城市理論預(yù)測2020年到2024年人口總數(shù)與年份的關(guān)系如下表所示:

年份202x(年)

0

1

2

3

4

人口數(shù)y(十萬)

5

7

8

11

19

1)請在右面的坐標(biāo)系中畫出上表數(shù)據(jù)的散點圖;

2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

3)據(jù)此估計2025年該城市人口總數(shù).

(參考公式:

【答案】1)見解析;(2;(32025年該城市人口總數(shù)為196萬人

【解析】

1)由表中數(shù)據(jù)描點即可;

2)由最小二乘法的公式得出的值,即可得出該線性方程;

3)將代入(2)中的線性方程,即可得出2025年該城市人口總數(shù).

1)畫出散點圖如圖所示.

2,,,

,

,

則線性回歸方程.

3時,(十萬)(萬).

答:估計2025年該城市人口總數(shù)為196萬人

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù),函數(shù) ,若對所有的總存在,使得成立,則實數(shù)的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】紙上寫有1,2,…,nn個正整數(shù),第1步劃去前面4個數(shù)1,2,3,4n的后面寫上劃去的4個數(shù)的和10;2步再劃去前面的4個數(shù)5,6,7,8在最后寫上劃去的4個數(shù)的和26:如此下去(即每步劃去前面4個數(shù),在最后面寫上劃去的4個數(shù)的和)

(1)若最后只剩下一個數(shù),則n應(yīng)滿足的充要條件是什么?

(2)n=2002到最后只剩下一個數(shù)為止,所有寫出的數(shù)包括原來的1,2…,2002)的總和是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一幅標(biāo)準(zhǔn)的三角板如圖(1)中,為直角,,為直角,,且,把拼齊使兩塊三角板不共面,連結(jié)如圖(2).

(1)若的中點,求證:;

(2)在《九章算術(shù)》中,稱四個面都是直角三角形的三棱錐為“鱉臑”,若圖(2)中,三棱錐的體積為,則圖(2)是否為鱉臑?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù))是定義在上的奇函數(shù).

(Ⅰ)求實數(shù)的值;

(Ⅱ)判斷并用定義證明的單調(diào)性;

(Ⅲ)若,且成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某超市為顧客提供四種結(jié)賬方式:現(xiàn)金、支付寶、微信、銀聯(lián)卡.若顧客甲沒有銀聯(lián)卡,顧客乙只帶了現(xiàn)金,顧客丙、丁用哪種方式結(jié)賬都可以,這四名顧客購物后,恰好用了其中的三種結(jié)賬方式,那么他們結(jié)賬方式的可能情況有( )種

A. 19B. 7C. 26D. 12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“三個臭皮匠,賽過諸葛亮”,這是我們常說的口頭禪,主要是說集體智慧的強大. 假設(shè)李某智商較高,他獨自一人解決項目M的概率為;同時,有個水平相同的人也在研究項目M,他們各自獨立地解決項目M的概率都是.現(xiàn)在李某單獨研究項目M,且這個人組成的團隊也同時研究項目M,設(shè)這個人團隊解決項目M的概率為,若,則的最小值是( )

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次函數(shù),從集合中隨機取一個數(shù)作為此函數(shù)的二次項系數(shù),從集合中隨機取一個數(shù)作為此函數(shù)的一次項系數(shù).

1)若,,求函數(shù)有零點的概率;

2)若,求函數(shù)在區(qū)間上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)fx)滿足條件f0)=1,及fx+1)﹣fx)=2x

1)求函數(shù)fx)的解析式;

2)在區(qū)間[1,1]上,yfx)的圖象恒在y2x+m的圖象上方,試確定實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案