分析 由圓的方程找出圓心坐標和圓的半徑,然后求出M與圓心的距離判斷出M在圓上即M為切點,根據(jù)圓的切線垂直于過切點的直徑,由圓心和M的坐標求出OM確定直線方程的斜率,根據(jù)兩直線垂直時斜率乘積為-1,求出切線的斜率,根據(jù)M坐標和求出的斜率寫出切線方程即可.
解答 解:由圓x2+y2=5,得到圓心A的坐標為(0,0),圓的半徑r=$\sqrt{5}$,
而|AM|=$\sqrt{5}$=r,所以M在圓上,則過M作圓的切線與AM所在的直線垂直,
又M(2,-1),得到AM所在直線的斜率為-$\frac{1}{2}$,所以切線的斜率為2,
則切線方程為:y+1=2(x-2)即2x-y-5=0.
故答案為:2x-y-5=0.
點評 此題考查學生掌握點與圓的位置關(guān)系及直線與圓的位置關(guān)系,掌握兩直線垂直時斜率所滿足的關(guān)系,會根據(jù)一點的坐標和直線的斜率寫出直線的方程,是一道綜合題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $({1,\frac{π}{4}})$ | B. | $({\frac{1}{2},\frac{π}{4}})$ | C. | $(\sqrt{2},\frac{π}{4})$ | D. | $({2,\frac{π}{4}})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -495 | B. | -220 | C. | 495 | D. | 220 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①② | B. | ①②③ | C. | ①②④ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若α⊥β,a?α,則a⊥β | B. | 若α⊥γ,β⊥γ,則α∥β | ||
C. | 若α∥β,a?α,b?β,則a∥b | D. | 若m⊥α,m∥n,n∥β,則α⊥β |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com