10.已知非零向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足|$\overrightarrow{a}$|≥1,|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|=2,($\overrightarrow{c}$-$\overrightarrow{a}$)•($\overrightarrow{c}$-$\overrightarrow$)=3,則|$\overrightarrow{c}$|的取值范圍是[1,3].

分析 由|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|=2,可得$\overrightarrow{a}$⊥$\overrightarrow$,可設(shè)$\overrightarrow{a}$=(m,0),$\overrightarrow$=(0,n),由條件可得m2+n2=4,設(shè)$\overrightarrow{c}$=(x,y),由條件($\overrightarrow{c}$-$\overrightarrow{a}$)•($\overrightarrow{c}$-$\overrightarrow$)=3,可得(x-m)x+(y-n)y=3,即有x2+y2-mx-ny-3=0,求得圓心和半徑,再由圓的最值的求法,即可得到所求范圍.

解答 解:由|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|=2,
由向量的平行四邊形法則,可得$\overrightarrow{a}$⊥$\overrightarrow$,
可設(shè)$\overrightarrow{a}$=(m,0),$\overrightarrow$=(0,n),
即有m2+n2=4,
設(shè)$\overrightarrow{c}$=(x,y),由($\overrightarrow{c}$-$\overrightarrow{a}$)•($\overrightarrow{c}$-$\overrightarrow$)=3,
可得(x-m)x+(y-n)y=3,
即有x2+y2-mx-ny-3=0,
表示圓心C($\frac{m}{2}$,$\frac{n}{2}$),半徑為$\sqrt{3+\frac{{m}^{2}+{n}^{2}}{4}}$=2的圓,
則|$\overrightarrow{c}$|=$\sqrt{{x}^{2}+{y}^{2}}$表示原點和圓上的點的距離,
即有最小值為2-$\sqrt{\frac{{m}^{2}+{n}^{2}}{4}}$=1;
最大值為2+$\sqrt{\frac{{m}^{2}+{n}^{2}}{4}}$=3.
故所求取值范圍是[1,3],
故答案為:[1,3].

點評 本題考查向量的數(shù)量積的坐標表示,考查坐標法的運用,圓的方程的運用,兩點的距離的運用,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

20.已知定義域在R上的函數(shù)y=f(x)滿足f(-x)=-f(x),在(0,+∞)上是增函數(shù)且f(x)<0,則F(x)=$\frac{1}{f(x)}$在 (-∞,0)上是增函數(shù)還是減函數(shù)?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.化簡:$\frac{{a}^{\frac{4}{3}}-{a}^{\frac{1}{3}}b}{{a}^{\frac{1}{3}}-^{\frac{1}{3}}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在數(shù)列{an}中,前n項和為Sn,且2Sn=n2+n.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{{a}_{n}}{{2}^{n}}$,數(shù)列{bn}的前n項和為Tn,求Tn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.給出以下4個命題;
①曲線y=$\frac{1+cosx}{sinx}$在點($\frac{π}{2}$,1)處的切線與直線x+y+1=0平行;
②若函數(shù)f(x)=x+asinx在R上單凋遞增,則實數(shù)a的取值范圍為-1≤a≤1;
③若f0(x)=sinx,f1(x)=f′0(x),…,fn(x)=f′n-1,n∈N*,則f2016(x)=sinx;
④函數(shù)f(x)=sin(πcosx)在區(qū)間[0,2π]上的零點個數(shù)是4.
其中正確的命題是①③(寫出正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=cos2x+$\frac{1}{2}$sin(2x+$\frac{π}{2}$)-$\frac{1}{2}$.
(1)求f(x)在($\frac{π}{6}$,$\frac{2π}{3}$)上的值域.
(2)設(shè)A,B,C為△ABC的三個內(nèi)角,若角C滿足f($\frac{C}{2}$)=$\frac{\sqrt{2}}{2}$,且邊c=$\sqrt{2}$a,求角A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=-x3-x+1.求證:
(1)f(x)在定義域上是減函數(shù);
(2)函數(shù)y=f(x)圖象與x軸最多有一個交點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),其左右焦點分別為F1,F(xiàn)2,焦距為4,雙曲線C2:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1,C1,C2的離心率互為倒數(shù).
(1)求橢圓的標準方程;
(2)過F2作直線交拋物線y2=2x于A,B兩點,射線OA,OB分別交橢圓C1于點D,E.證明:$\frac{|OD||OE|}{|DE|}$為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在直三棱柱ABC-A1B1C1中,底面△ABC是直角三角形,∠ABC=90°,BC=BB1,且A1C∩AC1=D,BC1∩B1C=E,連結(jié)DE.
(1)求證:A1B1⊥平面BB1C1C;
(2)求證:A1C⊥BC1;
(3)求證:DE⊥平面BB1C1C.

查看答案和解析>>

同步練習冊答案