【題目】下列有關(guān)命題的說法正確的有( 。

1)若pq為假命題,則p、q均為假命題;

2x1”x23x+20”的充分不必要條件;

3)若pq為假命題,則p∧¬q為真命題.

4)命題x23x+20,則x1”的逆否命題為:x≠1,則x23x+2≠0”

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】C

【解析】

對(duì)(1)、(2)、(3)、(4)逐項(xiàng)分析即可.

對(duì)(1),對(duì)于pq,則pq一假則假,故錯(cuò)誤;

對(duì)(2),,解得,所以可以推出,

反之,不一定得到,故正確;

對(duì)(3),pq為假命題,pq都是假命題,所以¬p和¬q都為真命題,

所以¬p∧¬q為真命題,故正確;

對(duì)(4),若pq的逆否命題為若¬q則¬p,故正確.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)甲、乙兩名自行車賽手在相同條件下進(jìn)行了6次測試,測得他們的最大速度(單位:m/s)的數(shù)據(jù)如下:

27

38

30

37

35

31

33

29

38

34

28

36

1)畫出莖葉圖,由莖葉圖你能獲得哪些信息?

2)分別求出甲、乙兩名自行車賽手最大速度(m/s)數(shù)據(jù)的平均數(shù)、極差、方差,并判斷選誰參加比賽比較合適?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信是現(xiàn)代生活中進(jìn)行信息交流的重要工具.據(jù)統(tǒng)計(jì),某公司200名員工中的人使用微信,其中每天使用微信時(shí)間少于一小時(shí)的有60人,其余的員工每天使用微信時(shí)間不少于一小時(shí),若將員工分成青年(年齡小于40歲)和中年(年齡不小于40歲)兩個(gè)階段,那么使用微信的人中是青年人.若規(guī)定:每天使用微信時(shí)間不少于一小時(shí)為經(jīng)常使用微信,那么經(jīng)常使用微信的員工中都是青年人.

1)若要調(diào)查該公司使用微信的員工經(jīng)常使用微信與年齡的關(guān)系,完成列聯(lián)表:

青年人

中年人

合計(jì)

經(jīng)常使用微信

不經(jīng)常使用微信

合計(jì)

2)由列聯(lián)表中所得數(shù)據(jù)判斷,能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“經(jīng)常使用微信與年齡有關(guān)”?

0.010

0.001

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)ae2x+(a﹣2) exx.

(1)討論的單調(diào)性;

(2)若有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=x3+ax2+bx+cxx1時(shí)都取得極值,求a,b的值與函數(shù)fx)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)p:實(shí)數(shù)x滿足,其中,命題實(shí)數(shù)滿足

|x-3|≤1 .

(1)若為真,求實(shí)數(shù)的取值范圍;

(2)若的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸,B原料2噸;生產(chǎn)每噸乙產(chǎn)品要用A原料1噸,B原料3噸.銷售每噸甲產(chǎn)品可獲得利潤5萬元,每噸乙產(chǎn)品可獲得利潤3萬元.該企業(yè)在一個(gè)生產(chǎn)周期內(nèi)消耗A原料不超過13噸,B原料不超過18噸.

1)列出甲、乙兩種產(chǎn)品滿足的關(guān)系式,并畫出相應(yīng)的平面區(qū)域;

2)在一個(gè)生產(chǎn)周期內(nèi)該企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品各多少噸時(shí)可獲得利潤最大,最大利潤是多少?

(用線性規(guī)劃求解要畫出規(guī)范的圖形及具體的解答過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=2sinxsinx+cosx.

1)求函數(shù)的最大值;

2)求該函數(shù)在區(qū)間[]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形,平面,且,點(diǎn)為線段的中點(diǎn).

1)求證:平面;

2)求證:平面

3)求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案