精英家教網 > 高中數學 > 題目詳情
已知等比數列{an}中,a1=3,a4=81,若數列{bn}滿足bn=log3an,則數列的前n項和Sn=   
【答案】分析:根據q3=求得q,進而根據等比數列的通項公式求得an,則bn可得,最后利用裂項法求得數列的前n項的和.
解答:解:q3==27,求得q=3
∴an=3×3n-1=3n,
∴bn=log3an=n,==-
∴Sn=1-+-+…+-=1-=
故答案為:
點評:本題主要考查了等比數列的性質.考查了學生對基礎知識的綜合運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

5、已知等比數列{an}的前n項和為Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,則q等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列{an}中,a2=9,a5=243.
(1)求{an}的通項公式;
(2)令bn=log3an,求數列{
1bnbn+1
}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列{an}滿足a1•a7=3a3a4,則數列{an}的公比q=
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列{an}中a1=64,公比q≠1,且a2,a3,a4分別為某等差數列的第5項,第3項,第2項.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)設bn=log2an,求數列{|bn|}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列{an}中,a3+a6=36,a4+a7=18.若an=
12
,則n=
9
9

查看答案和解析>>

同步練習冊答案