函數(shù)f(x)=x2-2x+3在區(qū)間[-1,2)的值域是
 
考點:二次函數(shù)在閉區(qū)間上的最值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由函數(shù)的解析式,利用二次函數(shù)的性質(zhì)求得函數(shù)f(x)=x2-2x+3在區(qū)間[-1,2)的值域.
解答: 解:∵函數(shù)f(x)=x2-2x+3=(x-1)2+2,在區(qū)間[-1,2)上,
當(dāng)x=1時,函數(shù)取得最小值為2,當(dāng)x=-1時,函數(shù)取得最大值為6,
故函數(shù)的值域為[2,6],
故答案為:[2,6].
點評:本題主要考查求二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)的應(yīng)用,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為實數(shù),函數(shù)f(x)=x2+|x-a|+1,x∈R
(1)若f(1)=2,求a值;
(2)討論f(x)的奇偶性;
(3)求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的二次方程(m2-1)x2-(m-2)x+1=0的兩個實數(shù)根互為倒數(shù),則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x+y•tan30°+1=0的傾斜角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示:直角梯形ABCD中,AB⊥AD,AD⊥DC,AB=2,BC=
3
,CD=1,E為AD中點,沿CE,BE把梯形折成四個面都是直角三角形的三棱錐,使點A,D重合,則這個三棱錐的體積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式5ij≤ki2+2j2對于所有i,j∈{1,2,3}都成立,則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x1=2t+it-1×2t-1+it-2×2t-2+it-3×2t-3+…i2×22+i1×21+i0×20
x2=2t+i0×2t-1+it-1×2t-2+it-2×2t-3+…+i3×22+i2×21+i1×20
x3=2t+i1×2t-1+i0×2t-2+it-1×2t-3+…+i4×22+i3×21+i2×20
x4=2t+i2×2t-1+i1×2t-2+i0×2t-3+it-1×2t-4+…+i5×22+i4×21+i3×20,…
以此類推構(gòu)造無窮數(shù)列{xn},其中it=0或l(k=0,1,2,…,t-1,t∈N*),若x1=110,則
(1)x2=
 

(2)滿足xn=x1(n∈N*,n≥2)的n的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,M,N分別為棱AB與AD的中點,則異面直線MN與BD1所成角的余弦值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+3
,g(x)=3-x,構(gòu)造函數(shù)y=F(x),定義如下:當(dāng)f(x)≥g(x)時,F(xiàn)(x)=g(x);當(dāng)f(x)<g(x)時,F(xiàn)(x)=f(x),則F(x)的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案