(本小題滿分12分)已知等差數(shù)列的前項(xiàng)和為,公差d0,,且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和公式.

(1);(2)。

解析試題分析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f2/a/1tw264.png" style="vertical-align:middle;" />,所以. ①
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/97/6/4auxl.png" style="vertical-align:middle;" />成等比數(shù)列,所以.  ②  
由①②及d0,可得.所以.
(2)由,可知.
所以 , 所以
,
所以數(shù)列的前項(xiàng)和為.
考點(diǎn):等差數(shù)列的性質(zhì);等比數(shù)列的性質(zhì);通項(xiàng)公式的求法;數(shù)列前n項(xiàng)和的求法。
點(diǎn)評(píng):本題主要考查等差、等比數(shù)列的性質(zhì)以及用裂項(xiàng)相消法求數(shù)列的前n項(xiàng)和的方法。利用裂項(xiàng)相消求和時(shí),一定要注意消掉的是那些項(xiàng),剩下的是那些項(xiàng)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的首項(xiàng)為,對(duì)任意的,定義.
(Ⅰ) 若
(i)求的值和數(shù)列的通項(xiàng)公式;
(ii)求數(shù)列的前項(xiàng)和
(Ⅱ)若,且,求數(shù)列的前項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列滿足:,其中的前n項(xiàng)和.
(1)求的通項(xiàng)公式;
(2)若數(shù)列滿足,求的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列的各項(xiàng)均為正數(shù),為其前項(xiàng)和,對(duì)于任意,總有成等差數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分16分)數(shù)列的前項(xiàng)和記為,且滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)求和
(3)設(shè)有項(xiàng)的數(shù)列是連續(xù)的正整數(shù)數(shù)列,并且滿足:

問(wèn)數(shù)列最多有幾項(xiàng)?并求這些項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)設(shè)數(shù)列的前項(xiàng)和為.已知,,.
(1)寫(xiě)出的值,并求數(shù)列的通項(xiàng)公式;
(2)記為數(shù)列的前項(xiàng)和,求;
(3)若數(shù)列滿足,,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知數(shù)列滿足條件:,
(1)判斷數(shù)列是否為等比數(shù)列;  
(2)若,令, 記
證明: 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,對(duì)一切正整數(shù),點(diǎn)都在函數(shù)的圖像上.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)
已知是三個(gè)連續(xù)的自然數(shù),且成等差數(shù)列,成等比數(shù)列,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案