【題目】已知冪函數(shù)f(x)=,其中2<m<2,m∈Z,滿足:

(1)f(x)是區(qū)間(0,+∞)上的增函數(shù);

(2)對(duì)任意的x∈R,都有f(x) +f(x)=0.

求同時(shí)滿足條件(1)、(2)的冪函數(shù)f(x)的解析式,并求x∈[0,3]時(shí),f(x)的值域.

【答案】略

【解析】因?yàn)?/span>2<m<2,m∈Z,所以m=1,0,1.

因?yàn)閷?duì)任意的x∈R,都有f(x) +f(x)=0,即f(x)=f(x),所以f(x)是奇函數(shù).

當(dāng)m=1時(shí),f(x)=x2只滿足條件(1)而不滿足條件(2);

當(dāng)m=1時(shí),f(x)=x0,條件(1)、(2)都不滿足;

當(dāng)m=0時(shí),f(x)=x3,條件(1)、(2)都滿足,當(dāng)x∈[0,3]時(shí),函數(shù)f(x)的值域?yàn)閇0, 27].

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了普及環(huán)保知識(shí),增強(qiáng)學(xué)生的環(huán)保意識(shí),在全校組織了一次有關(guān)環(huán)保知識(shí)的競(jìng)賽.經(jīng)過(guò)初賽、復(fù)賽,甲、乙兩個(gè)代表隊(duì)(每隊(duì)3人)進(jìn)入了決賽,規(guī)定每人回答一個(gè)問(wèn)題,答對(duì)為本隊(duì)贏得10分,答錯(cuò)得0分.假設(shè)甲隊(duì)中每人答對(duì)的概率均為 ,乙隊(duì)中3人答對(duì)的概率分別為 , , ,且各人回答正確與否相互之間沒(méi)有影響,用ξ表示乙隊(duì)的總得分. (Ⅰ)求ξ的分布列和數(shù)學(xué)期望;
(Ⅱ)求甲、乙兩隊(duì)總得分之和等于30分且甲隊(duì)獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) f(x)=asinx﹣bcosx(a,b為常數(shù),a≠0,x∈R)在x= 處取得最小值,則函數(shù)g(x)=f( ﹣x)是(
A.偶函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對(duì)稱
B.奇函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對(duì)稱
C.奇函數(shù)且它的圖象關(guān)于點(diǎn)( ,0)對(duì)稱
D.偶函數(shù)且它的圖象關(guān)于點(diǎn)( ,0)對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a,b,c為三個(gè)不同的實(shí)數(shù),記集合A= ,B= ,若集合A,B中元素個(gè)數(shù)都只有一個(gè),則b+c=(
A.1
B.0
C.﹣1
D.﹣2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)m∈R,函數(shù)f(x)=ex﹣m(x+1) m2(其中e為自然對(duì)數(shù)的底數(shù))
(Ⅰ)若m=2,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)已知實(shí)數(shù)x1 , x2滿足x1+x2=1,對(duì)任意的m<0,不等式f(x1)+f(0)>f(x2)+f(1)恒成立,求x1的取值范圍;
(Ⅲ)若函數(shù)f(x)有一個(gè)極小值點(diǎn)為x0 , 求證f(x0)>﹣3,(參考數(shù)據(jù)ln6≈1.79)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的可導(dǎo)函數(shù)f(x)滿足f(x)﹣f(﹣x)=2x3 , 當(dāng)x∈(﹣∞,0]時(shí)f'(x)<3x2 , 實(shí)數(shù)a滿足f(1﹣a)﹣f(a)≥﹣2a3+3a2﹣3a+1,則a的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a∈R,函數(shù)f(x)滿足f(2x)=x2﹣2ax+a2﹣1.
(Ⅰ)求f(x)的解析式,并寫出f(x)的定義域;
(Ⅱ)若f(x)在 上的值域?yàn)閇﹣1,0],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠ABC= ,邊BC在平面α內(nèi),頂點(diǎn)A在平面α外,直線AB與平面α所成角為θ.若平面ABC與平面α所成的二面角為 ,則sinθ=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞減,若f(log2a)+f(3 a)≥2f(﹣1),則實(shí)數(shù)a的取值范圍是(
A.[2,4]
B.[ ,2]
C.[ ,4]
D.[ ,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案