△ABC中,AB=,AC=1,B=30°,則△ABC的面積等于    
【答案】分析:由已知,結(jié)合正弦定理可得,從而可求sinC及C,利用三角形的內(nèi)角和公式計(jì)算A,利用三角形的面積公式進(jìn)行計(jì)算可求
解答:解:△ABC中,c=AB=,b=AC=1.B=30°
由正弦定理可得

b<c∴C>B=30°
∴C=60°,或C=120°
當(dāng)C=60°時,A=90°,
當(dāng)C=120°時,A=30°,        
故答案為:
點(diǎn)評:本題主要考查了三角形的內(nèi)角和公式,正弦定理及“大邊對大角”的定理,還考查了三角形的面積公式,在利用正弦定理求解三角形中的角時,在求出正弦值后,一定不要忘記驗(yàn)證“大邊對大角”.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC中,AB=4,AC=8,∠BAC=60°,延長CB到D,使BA=BD,當(dāng)E點(diǎn)在線段AB上移動時,若
AE
AC
AD
,當(dāng)λ取最大值時,λ-μ的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(中數(shù)量積)在△ABC中,AB=
3
,BC=2,∠A=
π
2
,如果不等式|
BA
-t
BC
|≥|
AC
|
恒成立,則實(shí)數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AB=7,BC=5,CA=6,則
AB
BC
=( 。
A、-19B、19
C、-38D、38

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,AB=4,AC=4
2
,∠BAC=45°,以AC的中線BD為折痕,將△ABD沿BD折起,構(gòu)成二面角A-BD-C.在面BCD內(nèi)作CE⊥CD,且CE=
2

(Ⅰ)求證:CE∥平面ABD;
(Ⅱ)如果二面角A-BD-C的大小為90,求二面角B-AC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,
AB
=
c
,
BC
=
a
、
CA
=
b
,若
a
b
=
b
c
,且
c
b
+
c
2
=0,則△ABC的形狀是
等腰直角三角形
等腰直角三角形

查看答案和解析>>

同步練習(xí)冊答案