如圖,矩形ABCD的對(duì)角線AC,BD交于O,AB=4,AD=3.沿AC把△ACD折起,使二面角D1-AC-B為直二面角.
(1)求直線AD1與直線DC所成角的余弦值;
(2)求二面角A-DD1-C的平面角正弦值大。
(1)以點(diǎn)B為坐標(biāo)原點(diǎn),平面ABC為xOy平面,BC,BA方向分別為x軸,y軸的正方向,建立空間直角坐標(biāo)系.則B(0,0,0),C(3,0,0),A(0,4,0).
在矩形ABCD中,作DH⊥AC于H,HM⊥BC于M,HN⊥AB于N,則H即為D1在平面ABC上的射影.
∵AB=4,AD=3,∴AC=5,DH=
12
5
,HN=
27
25
,HM=
64
25
D1(
27
25
,
64
25
,
12
5
)
,…(6分)
AD1
=(
27
25
,
64
25
,
12
5
)-(0,4,0)=(
27
25
,
-36
25
,
12
5
)
,
DC
=(3,0,0)-(3,4,0)=(0,-4,0)
,
所以cos<
AD1
DC
>=
AD1
DC
|
AD1
||
DC
|
=
12
25
.…(10分)
(2)設(shè)平面D1BC的法向量為
n
=(a,b,c)
,
BC
=(3,0,0),
BA
=(0,4,0)
,
n
BC
=0
,
n
D1B
=0
,∴
a=0
27a+64b+60c=0
n
=(0,-15,16)

設(shè)平面D1BA的法向量為
m
=(x,y,z)
,
m
BA
=0
,
m
D1B
=0
,
y=0
27x+64y+60z=0
,∴
m
=(-20,0,-9)
.…(14分)
cos<
m
n
>=
m
n
|
m
|•|
n
|
=-
144
481
,
sinθ=
1-(
144
481
)
2
=
25
337
481
.…(16分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

于直線m、n與平面α、β,有下列四個(gè)命題:
①若mα,nβαβ,則mn;
②若mα,nβαβ,則mn;
③若mα,nβαβ,則mn;
④若mα, nβαβ,則mn.
其中真命題的序號(hào)是(  )
A.①②B.③④C.①④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖02,在長(zhǎng)方體ABCDA1B1C1D1中,P、Q、R分別是棱AA1、BB1、BC上的點(diǎn),PQAB,C1QPR,求證:∠D1QR=90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4.
(1)求證:AC⊥BC1
(2)在AB上是否存在點(diǎn)D,使得AC1平面CDB1,若存在,確定D點(diǎn)位置并說明理由,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方體ABCD-A1B1C1D1中,點(diǎn)E在棱CD上.
(1)求證:EB1⊥AD1;
(2)若E是CD中點(diǎn),求EB1與平面AD1E所成的角;
(3)設(shè)M在BB1上,且
BM
MB1
=
2
3
,是否存在點(diǎn)E,使平面AD1E⊥平面AME,若存在,指出點(diǎn)E的位置,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

三棱錐P-ABC中,∠PAB=∠PAC=∠ACB=90°,AC=2,BC=
13
,PB=
29
,求PC與AB所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

長(zhǎng)方體ABCD-A1B1C1D1中,AB=2,AD=1,AA1=
2
,E、F分別是AB、CD的中點(diǎn)
(1)求證:D1E⊥平面AB1F;
(2)求直線AB與平面AB1F所成的角;
(3)求二面角A-B1F-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=
1
2
AB=1,N為AB上一點(diǎn),AB=4AN,M、S分別為PB、BC的中點(diǎn).
(Ⅰ)求證:CM⊥SN;
(Ⅱ)求二面角P-CB-A的余弦值;
(Ⅲ)求直線SN與平面CMN所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PA⊥平面ABCD,ABCD為正方形,,且PA=AD=2,E、F、G分別是線段PA、PD、CD的中點(diǎn).
(1)求證:面EFG⊥面PAB;
(2)求異面直線EG與BD所成的角的余弦值;
(3)求點(diǎn)A到面EFG的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案