(本小題滿(mǎn)分12分)
已知的兩個(gè)頂點(diǎn)的坐標(biāo)為,且的斜率之積等于,若頂點(diǎn)的軌跡是雙曲線(去掉兩個(gè)頂點(diǎn)),求的取值范圍.
設(shè)點(diǎn)的坐標(biāo)為,則.............................................. (1分)
的斜率為,的斜率為,............................... (3分)
依題意有................................................... (4分)
化簡(jiǎn)得..................................................... (6分)
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185404534368.gif" style="vertical-align:middle;" />,所以原方程可化為           ①................... (8分)
,則方程①表示的軌跡是圓或橢圓(去掉與軸的交點(diǎn));.................... (10分)
,則方程①表示的軌跡是焦點(diǎn)在軸上的雙曲線(去掉兩個(gè)頂點(diǎn))
所以所求的取值范圍是................................................. (12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分16分)已知橢圓的離心率為.
⑴若圓(x-2)2+(y-1)2=與橢圓相交于A、B兩點(diǎn)且線段AB恰為圓的直徑,求橢圓W方程;
⑵設(shè)L為過(guò)橢圓右焦點(diǎn)F的直線,交橢圓于M、N兩點(diǎn),且L的傾斜角為600.求的值.
⑶在(1)的條件下,橢圓W的左右焦點(diǎn)分別為F1、 F2,點(diǎn)R在直線l:x-y+8=0上.當(dāng)∠F1RF2取最大值時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

對(duì)任意實(shí)數(shù),直線與橢圓恒有公共點(diǎn),則
取值范圍是         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)
拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)F與雙曲線的右焦點(diǎn)重合,過(guò)點(diǎn)且斜率為1的直線與拋物線交于兩點(diǎn)
(1)求拋物線的方程
(2)求弦中點(diǎn)到拋物線準(zhǔn)線的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知拋物線的準(zhǔn)線與雙曲線相交于A,B兩點(diǎn),雙曲線的一條漸近線方程是,點(diǎn)F是拋物線的焦點(diǎn),,且△是直角三角形,則雙曲線的標(biāo)準(zhǔn)方程是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線過(guò)拋物線的焦點(diǎn),交拋物線于兩點(diǎn),且點(diǎn)軸上方,
若直線的傾斜角,則的取值范圍是(   )
A. B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)在直線上移動(dòng),當(dāng)取最小值時(shí),過(guò)點(diǎn)P引圓的切線,則此切線長(zhǎng)等于
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(文科) 拋物線上兩點(diǎn)處的切線交于點(diǎn),則的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知點(diǎn)M是拋物線y2=4x上的一點(diǎn),F為拋物線的焦點(diǎn),A在圓C:(x-4)2+(y-1)2=1上,則|MA|+|MF|的最小值為_(kāi)_______

查看答案和解析>>

同步練習(xí)冊(cè)答案