如圖,已知橢圓,直線的方程為,過右焦點(diǎn)的直線與橢圓交于異于左頂點(diǎn)兩點(diǎn),直線,交直線分別于點(diǎn),
(1)當(dāng)時,求此時直線的方程;
(2)試問,兩點(diǎn)的縱坐標(biāo)之積是否為定值?若是,求出該定值;若不是,請說明理由.

(1);(2),兩點(diǎn)的縱坐標(biāo)之積為定值.

解析試題分析:(1)討論①當(dāng)直線的斜率不存在時,確定得到,又
 不滿足;
②當(dāng)直線的斜率存在時,設(shè)方程為
代入橢圓;
應(yīng)用韋達(dá)定理研究,解得 求得直線的方程;
(2)的方程為的方程:聯(lián)立
確定 同理得,
從而.
討論不存在、存在的兩種情況,得出結(jié)論.
(1)①當(dāng)直線的斜率不存在時,由可知方程為
代入橢圓
 不滿足              2分
②當(dāng)直線的斜率存在時,設(shè)方程為
代入橢圓          3分
設(shè)          4分


 故直線的方程;                   6分
(2)的方程為的方程:聯(lián)立
得: 同理得                   8分

不存在時,                  9分
存在時,               12分
兩點(diǎn)的縱坐標(biāo)之積為定值                           13分
考點(diǎn):橢圓的幾何性質(zhì),直線方程,直線與圓錐曲線的位置關(guān)系,分類討論思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)(2011•重慶)如圖,橢圓的中心為原點(diǎn)O,離心率e=,一條準(zhǔn)線的方程為x=2

(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)設(shè)動點(diǎn)P滿足,其中M,N是橢圓上的點(diǎn).直線OM與ON的斜率之積為﹣
問:是否存在兩個定點(diǎn)F1,F(xiàn)2,使得|PF1|+|PF2|為定值.若存在,求F1,F(xiàn)2的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2011•湖北)平面內(nèi)與兩定點(diǎn)A1(﹣a,0),A2(a,0)(a>0)連線的斜率之積等于非零常數(shù)m的點(diǎn)的軌跡,加上A1、A2兩點(diǎn)所成的曲線C可以是圓、橢圓成雙曲線.
(1)求曲線C的方程,并討論C的形狀與m值的關(guān)系;
(2)當(dāng)m=﹣1時,對應(yīng)的曲線為C1;對給定的m∈(﹣1,0)∪(0,+∞),對應(yīng)的曲線為C2,設(shè)F1、F2是C2的兩個焦點(diǎn).試問:在C1上,是否存在點(diǎn)N,使得△F1NF2的面積S=|m|a2.若存在,求tanF1NF2的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

過點(diǎn)作傾斜角為的直線與曲線C交于不同的兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓的離心率.

(1)求橢圓C的方程;
(2)如圖,是橢圓C的頂點(diǎn),P是橢圓C上除頂點(diǎn)外的任意一點(diǎn),直線DP交軸于點(diǎn)N,直線AD交BP于點(diǎn)M。設(shè)BP的斜率為,MN的斜率為.證明:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的焦點(diǎn)為,點(diǎn)是橢圓上的一點(diǎn),軸的交點(diǎn)恰為的中點(diǎn), .
(1)求橢圓的方程;
(2)若點(diǎn)為橢圓的右頂點(diǎn),過焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn),求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知、為橢圓的左右焦點(diǎn),點(diǎn)為其上一點(diǎn),且有
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過的直線與橢圓交于、兩點(diǎn),過平行的直線與橢圓交于、兩點(diǎn),求四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知,,分別是橢圓的四個頂點(diǎn),△是一個邊長為2的等邊三角形,其外接圓為圓
(1)求橢圓及圓的方程;
(2)若點(diǎn)是圓劣弧上一動點(diǎn)(點(diǎn)異于端點(diǎn)),直線分別交線段,橢圓于點(diǎn),,直線交于點(diǎn)
(。┣的最大值;
(ⅱ)試問:,兩點(diǎn)的橫坐標(biāo)之和是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)拋物線:的準(zhǔn)線與軸交于點(diǎn),焦點(diǎn)為;橢圓為焦點(diǎn),離心率.設(shè)的一個交點(diǎn).

(1)求橢圓的方程.
(2)直線的右焦點(diǎn),交兩點(diǎn),且等于的周長,求的方程.

查看答案和解析>>

同步練習(xí)冊答案