19.若正方體的外接球的表面積為6π,則該正方體的表面積為12.

分析 先求球的半徑,直徑就是正方體的對(duì)角線,然后求出正方體的棱長(zhǎng),即可求出正方體的表面積.

解答 解:正方體外接球的表面積是6π,則4πR2=6π,則外接球的半徑R=$\frac{\sqrt{6}}{2}$,
所以正方體的對(duì)角線的長(zhǎng)為$\sqrt{6}$,棱長(zhǎng)等于$\sqrt{2}$,
所以正方體的表面積為6×($\sqrt{2}$)2=12,
故答案為:12.

點(diǎn)評(píng) 本題考查球的內(nèi)接正方體問(wèn)題,解答的關(guān)鍵是利用球的直徑就是正方體的對(duì)角線.是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知直三棱柱ABC-A′B′C′中,AB=AC=AA′=2,AB⊥AC,則直三棱柱ABC-A′B′C′的外接球的體積為4$\sqrt{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.宋元時(shí)期數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生”的問(wèn)題:松長(zhǎng)五尺,竹長(zhǎng)兩尺,松日自半,竹日自倍,松竹何日而長(zhǎng)等.如圖是源于其思想的一個(gè)程序框圖,若輸入的a、b分別為2、1,則輸出的n=( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.以正方體的頂點(diǎn)為頂點(diǎn)的四棱錐的個(gè)數(shù)為48.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖所示,MCN是某海灣旅游區(qū)的一角,為營(yíng)造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會(huì)決定建立面積為4$\sqrt{3}$平方千米的三角形主題游戲樂(lè)園ABC,并在區(qū)域CDE建立水上餐廳.已知∠ACB=120°,∠DCE=30°.
(Ⅰ)設(shè)AC=x,AB=y,用x表示y,并求y的最小值;
(Ⅱ)設(shè)∠ACD=θ(θ為銳角),當(dāng)AB最小時(shí),用θ表示區(qū)域CDE的面積S,并求S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知U={x|x∈N,x≤10},A={1,3,4,6},B={0,2,4,6,8,10},則(∁UA)∩B=( 。
A.{2,8}B.{2,8,10}C.{0,2,8,10}D.{0,2,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知三棱錐A-BCD,E為BD的中點(diǎn),AE⊥平面BCD,BC⊥CD,BC=CD=1,且三棱錐A-BCD的外接球的體積為$\frac{4π}{3}$,則三棱錐A-BCD的體積為$\frac{2+\sqrt{2}}{12}$或$\frac{2-\sqrt{2}}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,在三棱柱ABC-A1B1C1中,AB⊥平面BB1C1C,∠CC1B1=$\frac{2π}{3}$,AB=BB1=2,BC=1,D為CC1的中點(diǎn).
(I) 求證:DB1⊥平面ABD;
(II) 求點(diǎn)A1到平面AB1D的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.求函數(shù)y=log(x-1)(x+1)的定義域.

查看答案和解析>>

同步練習(xí)冊(cè)答案