19.已知函數(shù)f(x)=x2-2ax+2,x∈[-1,1],求函數(shù)f(x)的最小值.

分析 對(duì)于函數(shù)f(x)=x2-2ax+2=(x-a)2+2-a2,分對(duì)稱在區(qū)間[-1,1]的左側(cè)、中間、右側(cè)三種情況,分別求得f(x)在[-1,1]上的最小值.

解答 解:函數(shù)f(x)=x2-2ax+2=(x-a)2+2-a2,
當(dāng)a<-1時(shí),f(x)在[-1,1]上的最小值為f(-1)=2a+3;
當(dāng)-1≤a≤1時(shí),f(x)在[-1,1]上的最小值為f(a)=2-a2;
當(dāng)a>1時(shí),f(x)在[-1,1]上的最小值為f(1)=3-2a.

點(diǎn)評(píng) 本題主要考查求二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)的應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在三棱錐P-ABC中,PA⊥平面ABC,AB⊥BC,DE垂直平分線段PC,且分別交AC、PC于D、E兩點(diǎn),PB=BC,PA=AB=1.
(1)求證:PC⊥平面BDE;
(2)求直線BE與平面PAC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=4,$\overrightarrow{a}$⊥($\overrightarrow{a}$+$\overrightarrow$),則$\overrightarrow{a}$與$\overrightarrow$夾角的度數(shù)為120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)f(x)=$\left\{\begin{array}{l}{x+1,(x>0)}\\{π,(x=0)}\\{0,(x<0)}\end{array}\right.$,則f[f(-1)]=π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,若n≥2時(shí),an是Sn與Sn-1的等差中項(xiàng),則S5=81.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,斜三棱柱ABC-A1B1C1中,AB=AC=2,平面ABC⊥平面B1BCC1,BC=BB1=2$\sqrt{3}$,∠B1BC=60°,D為B1C1的中點(diǎn).
(1)求證:AC1∥平面A1BD;
(2)求二面角B1-A1B-D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知集合M={(x,y)|y=f(x)},若對(duì)于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“理想集合”.給出下列5個(gè)集合:
①M(fèi)={(x,y)|y=$\frac{1}{x}$};②M={(x,y)|y=x2-2x+2};③M={(x,y)|y=ex-2};
④M={(x,y)|y=lgx};⑤M={(x,y)|y=sin(2x+3)}.
其中所有“理想集合”的序號(hào)是( 。
A.①②B.③⑤C.②③⑤D.③④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)y=sin2x的圖象沿x軸向右平移φ(φ>0)個(gè)單位后,所得圖象關(guān)于y軸對(duì)稱,則φ的最小值為(  )
A.πB.$\frac{3π}{4}$C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)y=x2-2x+9,x∈[-1,2]的值域?yàn)閇8,12].

查看答案和解析>>

同步練習(xí)冊(cè)答案