分析 求出函數(shù)f(x)的導(dǎo)數(shù),得到關(guān)于a,b,c的方程組,解出a,b,c的值,從而求出函數(shù)f(x)的單調(diào)區(qū)間,求出函數(shù)f(x)的最小值和最大值即可得到答案.
解答 解:f′(x)=3x2+2ax+b,
由題意得f(0)=0,f′(-1)=f′(1)=tan $\frac{3π}{4}$=-1.
∴$\left\{\begin{array}{l}{c=0}\\{3-2a+b=-1}\\{3+2a+b=-1}\end{array}\right.$,∴a=0,b=-4,c=0.
∴f(x)=x3-4x,x∈.故①正確.
由f′(x)=3x2-4=0得x1=-$\frac{2\sqrt{3}}{3}$,x2=$\frac{2\sqrt{3}}{3}$.
根據(jù)x1,x2分析f′(x)的符號(hào)、f(x)的單調(diào)性和極值點(diǎn).
x | -2 | (-2,-$\frac{2\sqrt{3}}{3}$) | -$\frac{2\sqrt{3}}{3}$ | (-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$) | $\frac{2\sqrt{3}}{3}$ | ($\frac{2\sqrt{3}}{3}$,2) | 2 |
f′(x) | + | 0 | - | 0 | + | ||
f(x) | 0 | ↗ | $\frac{16\sqrt{3}}{9}$ | ↘ | $\frac{-16\sqrt{3}}{9}$ | ↗ | 0 |
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及切線(xiàn)問(wèn)題,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $2\sqrt{3}$ | B. | 3 | C. | $\sqrt{6}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\frac{1}{2}$ | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①② | B. | ①③ | C. | ②③ | D. | ③④ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com