【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x與相應(yīng)的生產(chǎn)能耗y的幾組對(duì)照數(shù)據(jù)

x

3

4

5

6

y

2.5

3

4

4.5

(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程.(其中, ).

【答案】(1)見解析(2)

【解析】

(1)把所給的四對(duì)數(shù)據(jù)寫成對(duì)應(yīng)的點(diǎn)的坐標(biāo),在坐標(biāo)系中描出來(lái),得到散點(diǎn)圖;

(2)根據(jù)所給的這組數(shù)據(jù)求出利用最小二乘法所需要的幾個(gè)數(shù)據(jù),代入求系數(shù)b的公式,求得結(jié)果,再把樣本中心點(diǎn)代入,求出a的值,得到線性回歸方程.

(1)把所給的四對(duì)數(shù)據(jù)寫成對(duì)應(yīng)的點(diǎn)的坐標(biāo),在坐標(biāo)系中描出來(lái),得到散點(diǎn)圖.

(2)由對(duì)照數(shù)據(jù),計(jì)算得xi2=86,xiyi=66.5,=4.5,=3.5,

回歸方程的系數(shù)為b===0.7,

a=﹣b=3.5﹣0.7×4.5=0.35,

所求線性回歸方程為=0.7x+0.35

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)的定義域?yàn)?/span>D={x|x≠0},且滿足對(duì)于任意x1,x2D,有f(x1·x2)=f(x1)+f(x2).

(1)求f(1)的值;

(2)判斷f(x)的奇偶性并證明你的結(jié)論;

(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知遞增等比數(shù)列{an},滿足a1=1,且a2a4﹣2a3a5+a4a6=36.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3an+ ,求數(shù)列{an2bn}的前n項(xiàng)和Sn;
(3)在(2)的條件下,令cn= ,{cn}的前n項(xiàng)和為Tn , 若Tn>λ恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè){an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和.已知S3=7,且a1+3,3a2 , a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)令bn=lna3n+1 , n=1,2,…,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a,b,c均為正數(shù),且a+b+c=1.證明:
(1) ;
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在三棱錐中,已知底面是以為斜邊的等腰直角三角形,且側(cè)棱長(zhǎng),則三棱錐的外接球的表面積等于__________

【答案】

【解析】三棱錐的外接球的球心在SM上(M為AB 中點(diǎn)),球半徑設(shè)為R,則

點(diǎn)睛涉及球與棱柱、棱錐的切、接問題時(shí),一般過球心及多面體中的特殊點(diǎn)(一般為接、切點(diǎn))或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識(shí)尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.

型】填空
結(jié)束】
16

【題目】已知斜率的直線過拋物線的焦點(diǎn),且與拋物線相交于、兩點(diǎn),分別過點(diǎn)、若作拋物線的兩條切線相交于點(diǎn),則的面積為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在四棱錐中,底面為菱形,且 底面,

, , 上點(diǎn),且平面.

(1)求證: ;(2)求三棱錐的體積.

【答案】(1)見解析;(2).

【解析】試題分析:(1)根據(jù)菱形性質(zhì)得對(duì)角線相互垂直,根據(jù)底面,再根據(jù)線面垂直判定定理得即可得結(jié)果(2)記的交點(diǎn)為,則BD 為高,三角形POE為底,根據(jù)錐體體積公式求體積

試題解析:(1)

(2)記的交點(diǎn)為,連接

平面

中: , , ,

中: , ,則,即

型】解答
結(jié)束】
21

【題目】已知橢圓 的離心率,且其的短軸長(zhǎng)等于.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)如圖,記圓 ,過定點(diǎn)作相互垂直的直線,直線(斜率)與圓和橢圓分別交于、兩點(diǎn),直線與圓和橢圓分別交于兩點(diǎn),若面積之比等于,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了月份每月號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期

晝夜溫差

就診人數(shù)(個(gè))

16

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;

(2)若選取的是月與月的兩組數(shù)據(jù),請(qǐng)根據(jù)月份的數(shù)據(jù),求出 關(guān)于的線性回歸方程;

(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過人,則認(rèn)為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?

參考公式:

img src="http://thumb.zyjl.cn/questionBank/Upload/2018/08/07/18/7f4fe67a/SYS201808071848019525920497_ST/SYS201808071848019525920497_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是拋物線 )上一點(diǎn), 是拋物線的焦點(diǎn), .

(1)求拋物線的方程;

(2)已知 ,過 的直線 交拋物線 、 兩點(diǎn),以 為圓心的圓 與直線 相切,試判斷圓 與直線 的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案