【題目】已知集合A={x|x2-6x+8<0},B={x|(xa)(x-3a)<0}.

(1)若xAxB的充分條件,求a的取值范圍;

(2)若AB,求a的取值范圍.

【答案】(1);(2)∪[4,+∞)

【解析】試題分析:

首先求得集合A={x|2<x<4},B={x|(xa)(x-3a)<0}.

(1)由題意分類討論a>0a<0兩種情況可得a的取值范圍為.

(2)由題意分類討論集合B是否為空集可得a的取值范圍是[4,+∞).

試題解析:

A={x|x2-6x+8<0}={x|2<x<4},B={x|(xa)(x-3a)<0}.

(1)當(dāng)a=0時(shí),B,不合題意.

當(dāng)a>0時(shí),B={x|a<x<3a},要滿足題意,

解得a2.

當(dāng)a<0時(shí),B={x|3a<x<a},要滿足題意,

無解.綜上,a的取值范圍為.

(2)要滿足AB,

當(dāng)a>0時(shí),B={x|a<x<3a},

a4或3a2,即0<aa4.

當(dāng)a<0時(shí),B={x|3a<x<a},則a2或a,即a<0.

當(dāng)a=0時(shí),B,AB.

綜上,a的取值范圍為∪[4,+∞).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】累計(jì)凈化量(CCM)是空氣凈化器質(zhì)量的一個(gè)重要衡量指標(biāo),它是指空氣凈化器從開始使用到凈化效率為時(shí)對(duì)顆粒物的累計(jì)凈化量(單位:克).根據(jù)國家標(biāo)準(zhǔn),對(duì)空氣凈化器的累計(jì)凈化量(CCM)有如下等級(jí)劃分:

計(jì)凈化量(克)

12以上

等級(jí)

已知某批空氣凈化器共臺(tái),其累計(jì)凈化量都分布在區(qū)間內(nèi),為了解其質(zhì)量,隨機(jī)抽取了臺(tái)凈化器作為樣本進(jìn)行估計(jì),按照,,,,均勻分組,其中累計(jì)凈化量在的所有數(shù)據(jù)有:,,,并繪制了如下頻率分布直方圖

1)求的值及頻率分布直方圖中的值;

2)以樣本估計(jì)總體,試估計(jì)這批空氣凈化器(共2000臺(tái))中等級(jí)為的空氣凈化器有多少臺(tái)?

3)從累計(jì)凈化量在的樣本中隨機(jī)抽取2臺(tái),求恰好有1臺(tái)等級(jí)為的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)當(dāng)a=2時(shí),求f(x)在x∈[0,1]的最大值;
(2)當(dāng)0<a<1,f(x)在x∈[0,1]上的最大值和最小值之和為a,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知多面體中,四邊形為平行四邊形, ,且 , , .

(1)求證:平面平面;

(2)若,直線與平面夾角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個(gè)命題:
(1)命題“若 ,則tanα=1”的逆否命題為假命題;
(2)命題p:x∈R,sinx≤1.則¬p:x0∈R,使sinx0>1;
(3)“ ”是“函數(shù)y=sin(2x+)為偶函數(shù)”的充要條件;
(4)命題p:“x0∈R,使 ”;命題q:“若sinα>sinβ,則α>β”,那么(¬p)∧q為真命題.
其中正確的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三(1)班在一次單元測(cè)試中,每位同學(xué)的考試分?jǐn)?shù)都在區(qū)間[100,128]內(nèi),將該班所有同學(xué)的考試分?jǐn)?shù)分為七組:[100,104),[104,108),[108,112),[112,116),[116,120),[120,124),[124,128],繪制出頻率分布直方圖如圖所示,已知分?jǐn)?shù)低于112分的有18人,則分?jǐn)?shù)不低于120分的人數(shù)為(

A.10
B.12
C.20
D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 且S4=4S2 , a2n=2an+1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式
(Ⅱ)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn , 且 (λ為常數(shù)).令cn=b2n , (n∈N*),求數(shù)列{cn}的前n項(xiàng)和Rn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)的圖象和直線無交點(diǎn),現(xiàn)有下列結(jié)論:

①方程一定沒有實(shí)數(shù)根;②若,則不等式對(duì)一切實(shí)數(shù)都成立;

③若,則必存在實(shí)數(shù),使;④若,則不等式對(duì)一切實(shí)數(shù)都成立;⑤函數(shù)的圖象與直線也一定沒有交點(diǎn),其中正確的結(jié)論是__________.(寫出所有正確結(jié)論的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的偶函數(shù),其導(dǎo)函數(shù)為,若對(duì)任意的實(shí)數(shù),都有恒成立,則使成立的實(shí)數(shù)的取值范圍為( 。

A. B. (﹣∞,﹣1)∪(1,+∞)

C. (﹣1,1) D. (﹣1,0)∪(0,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案