分析 (1)利用兩角和與差的三角函數(shù)化簡(jiǎn)極坐標(biāo)方程,兩邊同乘ρ,然后求解直角坐標(biāo)方程.
(2)求出直線參數(shù)方程,代入圓的方程,根據(jù)直線參數(shù)方程t的幾何意義,求解|PA|2+|PB|2即可.
解答 (本小題滿分10分)
解(1)由曲線C的極坐標(biāo)方程$ρ=2\sqrt{2}cos(θ-\frac{π}{4})$可得,ρ2=2ρcosθ+2ρsinθ,因此曲線C的直角坐標(biāo)方程為x2+y2=2x+2y
點(diǎn)P的直角坐標(biāo)為(1,0),直線l的傾斜角為135°,所以直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1-\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.(t$為參數(shù)).(5分)
(2)將$\left\{{\begin{array}{l}{x=1-\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.(t$為參數(shù))代入x2+y2=2x+2y,有${t^2}-\sqrt{2}t-1=0$,
設(shè)A,B對(duì)應(yīng)參數(shù)分別為t1,t2,有${t_1}+{t_2}=\sqrt{2},{t_1}{t_2}=-1$,根據(jù)直線參數(shù)方程t的幾何意義有,|PA|2+|PB|2=$t_1^2+t_2^2={({t_1}+{t_2})^2}-2{t_1}{t_2}=4$.(10分)
點(diǎn)評(píng) 本題考查圓的極坐標(biāo)方程以及直線的參數(shù)方程的應(yīng)用,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1-$\frac{π}{2}$ | B. | 1-$\frac{π}{4}$ | C. | 1-$\frac{π}{8}$ | D. | 1-$\frac{π}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1-($\frac{1}{2}$)a | B. | ($\frac{1}{2}$)a-1 | C. | 1-2a | D. | 2a-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1 | B. | $\frac{{x}^{2}}{4}$-y2=1 | C. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{16}$=1 | D. | x2-$\frac{{y}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{2\sqrt{3}}}{3}$ | B. | $\frac{{3\sqrt{5}}}{5}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | $\frac{9}{8}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com