如圖所示,將一矩形花壇
擴建成一個更大的矩形花壇
,要求
在
的延長線上,
在
的延長線上,且對角線
過
點.已知
米,
米。
(1)設
(單位:米),要使花壇
的面積大于32平方米,求
的取值范圍;
(2)若
(單位:米),則當
,
的長度分別是多少時,花壇
的面積最大?并求出最大面積.
(Ⅰ)
;(Ⅱ)花壇
的面積最大27平方米,此時
米,
米 .
試題分析:(Ⅰ)把
用
表示后,再把矩形
面積表示出來,解不等式可得;(Ⅱ)對(Ⅰ)中的函數(shù)解析式,以導數(shù)為工具,求出最大值.
試題解析:由于
即
,則
故
4分
(1)由
得
,
因為
,所以
,即
從而
或
即
長的取值范圍是
8分
(2)令
,則
11分
因為當
時,
,所以函數(shù)
在
上為單調(diào)遞減函數(shù),
從而當
時
取得最大值,即花壇
的面積最大27平方米,
此時
米,
米 16分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
.
(Ⅰ)若函數(shù)在區(qū)間
上存在極值,求實數(shù)
的取值范圍;
(Ⅱ)如果當
時,不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設
,曲線
在點
處的切線與直線
垂直.
(1)求
的值;
(2) 若
,
恒成立,求
的范圍.
(3)求證:
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設函數(shù)
(
R),且該函數(shù)曲線
在
處的切線與
軸平行.
(Ⅰ)討論函數(shù)
的單調(diào)性;
(Ⅱ)證明:當
時,
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知點P是曲線y=lnx上的一個動點,則點P到直線l:y=x+2的距離的最小值為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設
是定義在R上的奇函數(shù),且
,當
時,有
恒成立,則不等式
的解集是( )
A.(-2,0) ∪(2,+∞) | B.(-2,0) ∪(0,2) |
C.(-∞,-2)∪(2,+∞) | D.(-∞,-2)∪(0,2) |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
曲線
在點
處的切線方程是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設曲線
在點(1,2)處的切線與直線
平行,則
=( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
的單調(diào)遞減區(qū)間是
查看答案和解析>>