13.下列判斷正確的是(1)(5)(把正確的序號都填上).
(1)對應(yīng):t→s,其中s=t2,t∈R,s∈R,此對應(yīng)為函數(shù);
(2)函數(shù)y=|x-1|與y=$\left\{\begin{array}{l}x-1,x>1\\ 1-x,x<1\end{array}$是同一函數(shù);
(3)若函數(shù)f(x)在區(qū)間(-∞,0)上遞增,在區(qū)間[0,+∞)上也遞增,則函數(shù)f(x)必在R上遞增;
(4)A={x|x2+x-6=0},B={x|mx+1=0},且A∪B=A,則m的取值集合是{-$\frac{1}{2}$,$\frac{1}{3}$};
(5)定義在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)f(x)在R上不是單調(diào)減函數(shù);
(6)函數(shù)y=f(2x-1)的圖象可由y=f(2x)的圖象向右平移1個單位得到.

分析 根據(jù)函數(shù)的概念,可判斷(1);根據(jù)同一函數(shù)的概念,可判斷(2);根據(jù)函數(shù)單調(diào)性的定義,可判斷(3)(5);根據(jù)子集的定義,可判斷(4);根據(jù)函數(shù)圖象的平移變換法則,可判斷(6)

解答 解:(1)對應(yīng):t→s,其中s=t2,t∈R,s∈R,滿足函數(shù)的定義,故此對應(yīng)為函數(shù);故正確;
(2)函數(shù)y=|x-1|與y=$\left\{\begin{array}{l}x-1,x>1\\ 1-x,x<1\end{array}$的定義域不同,故不是同一函數(shù);故錯誤;
(3)若函數(shù)f(x)在區(qū)間(-∞,0)上遞增,在區(qū)間[0,+∞)上也遞增,則函數(shù)f(x)在R上不一定遞增;故錯誤;
(4)A={x|x2+x-6=0}={-3,2},B={x|mx+1=0},且A∪B=A,則B⊆A,則m的取值集合是{0,-$\frac{1}{2}$,$\frac{1}{3}$};故錯誤
(5)定義在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)f(x)在R上不是單調(diào)減函數(shù);故正確;
(6)函數(shù)y=f(2x-1)的圖象可由y=f(2x)的圖象向右平移$\frac{1}{2}$個單位得到.故錯誤;
故答案為:(1)(5)

點(diǎn)評 本題以命題的真假判斷與應(yīng)用為載體,考查了函數(shù)的概念,函數(shù)單調(diào)性,函數(shù)圖象的平移變換,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若關(guān)于x的不等式:x2-ax-6a≤0有解,且對解集中的任意x1,x2,總有滿足|x1-x2|≤5,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)α為銳角,若cos(α+$\frac{π}{6}$)=$\frac{4}{5}$,則sin(α-$\frac{π}{12}$)=(  )
A.$\frac{\sqrt{2}}{10}$B.-$\frac{\sqrt{2}}{10}$C.$\frac{\sqrt{2}}{5}$D.-$\frac{\sqrt{2}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若線性回歸方程為$\stackrel{∧}{y}$=4.4$\hat x$+838,則當(dāng)x=10時(shí),y的估計(jì)值為882.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)y=$\frac{sinx}{x}$的圖象大致是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\frac{\sqrt{6}}{2}$,左頂點(diǎn)到一條漸近線的距離為$\frac{2\sqrt{6}}{3}$,則該雙曲線的標(biāo)準(zhǔn)方程為(  )
A.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{8}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{8}$=1C.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{12}$=1D.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=Asin(2x+φ)(A≠0)滿足f(x+a)=f(a-x),則f(a+$\frac{π}{4}$)=( 。
A.AB.-AC.0D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.用二分法求方程x2-5=0在區(qū)間(2,3)內(nèi)的近似解,經(jīng)過7次二分后精確度能達(dá)到0.01.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.直線y=kx與函數(shù)f(x)=$\frac{{|{{x^2}-1}|}}{x-1}$圖象有兩個交點(diǎn),則k的范圍是( 。
A.$({0,\sqrt{3}})$B.$({0,1})∪({1,\sqrt{3}})$C.$({1,\sqrt{3}})$D.(0,1)∪(1,2)

查看答案和解析>>

同步練習(xí)冊答案