命題“若f(x),f(x)均存在,則f(x)必存在”是________。

 

答案:假
提示:

  分析和:若,均存在且相等,則存在..

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有以下命題:
①若f(x)在閉區(qū)間[a,b]上的圖象連續(xù)不斷,且f(x)在區(qū)間(a,b)上有零點(diǎn),則有f(a)f(b)<0;
②求f(x)=x2的零點(diǎn)時(shí),不能用二分法.
③已知g(x)=f(x)-x,h(x)=f[f(x)]-x,若g(x)的零點(diǎn)為x1,x2.則x1,x2也是h(x)的零點(diǎn);
④若x1是f(x)=2x+2x-5函數(shù)的零點(diǎn),x2是函數(shù)g(x)=2log2(x-1)+2x-5的零點(diǎn),則x1+x2=
72

其中正確的命題是
②③④
②③④
(寫出所正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)給出以下命題:
①函數(shù)f(x)=|log2x2|既無最大值也無最小值;
②函數(shù)f(x)=|x2-2x-3|的圖象關(guān)于直線x=1對稱;
③若函數(shù)f(x)的定義域?yàn)椋?,1),則函數(shù)f(x2)的定義域?yàn)椋?1,1);
④若函數(shù)f(x)滿足|f(-x)|=|f(x)|,則函數(shù)f(x)或是奇函數(shù)或是偶函數(shù);
⑤設(shè)f(x)與g(x)是定義在R上的兩個(gè)函數(shù),若對任意x1,x2∈R(x1≠x2)有|f(x1)-f(x2)|>|g(x1)-g(x2)|恒成立,且函數(shù)f(x)在R上遞增,則函數(shù)h(x)=f(x)-g(x)在R上遞增.
其中正確的命題是
②④⑤
②④⑤
(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省成都樹德中學(xué)2012屆高考適應(yīng)考試(一)數(shù)學(xué)試題文理科 題型:022

對于函數(shù)f(x),定義:若存在非零常數(shù)M,T,使函數(shù)f(x)對定義域內(nèi)的任意x,都滿足f(x+T)-f(x)=M,則稱函數(shù)y=f(x)是準(zhǔn)周期函數(shù),非零常數(shù)T稱為函數(shù)y=f(x)的一個(gè)準(zhǔn)周期.如函數(shù)f(x)=2x+sinx是以T=2π為一個(gè)準(zhǔn)周期且M=4π的準(zhǔn)周期函數(shù).下列命題:

①2π是函數(shù)f(x)=sinx的一個(gè)準(zhǔn)周期;

②f(x)=x+(-1)x(x∈z)是以T=2為一個(gè)準(zhǔn)周期且M=2的準(zhǔn)周期函數(shù);

③函數(shù)f(x)=kx+b+Asin(wx+φ)(k≠0,w>0)是準(zhǔn)周期函數(shù);

④如果f(x)是一個(gè)一次函數(shù)與一個(gè)周期函數(shù)的和的形式,則f(x)一定是準(zhǔn)周期函數(shù);

⑤如果f(x+1)=-f(x)則函數(shù)h(x)=x+f(x)是以T=2為一個(gè)準(zhǔn)周期且M=4的準(zhǔn)周期函數(shù);其中的真命題是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆浙江省高二下學(xué)期期末文科數(shù)學(xué)試卷(解析版) 題型:填空題

給出下列四個(gè)命題:

①若f(x+2)=f(2-x),則f(x)的圖象關(guān)于x=2對稱;

②若f(x+2)=f(2-x),則f(x)的圖象關(guān)于y軸對稱;

③函數(shù)y=f(2+x)與y=f(2-x)的圖象關(guān)于x=2對稱;

④函數(shù)y=f(2+x)與y=f(2—x)的圖象關(guān)于y軸對稱。正確命題的序號是     .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧省高三高考壓軸理科數(shù)學(xué)試卷(解析版) 題型:選擇題

命題“若f(x)是奇函數(shù),則f(-x)是奇函數(shù)”的否命題是

A.若f(x) 是偶函數(shù),則f(-x)是偶函數(shù)

B.若f(x)不是奇函數(shù),則f(-x)不是奇函數(shù)

C.若f(-x)是奇函數(shù),則f(x)是奇函數(shù)

D.若f(-x)不是奇函數(shù),則f(x)不是奇函數(shù)

 

查看答案和解析>>

同步練習(xí)冊答案