已知函數(shù)f(x)=5sinxcosx-5
3
cos2x
(其中x∈R).
求:
①函數(shù)f(x)的最小正周期;  
②函數(shù)f(x)的單調(diào)遞減區(qū)間;
③函數(shù)f(x)圖象的對稱軸.
解∵f(x)=
5
2
sin2x-5
3
1+cos2x
2
=
5
2
sin2x-
5
3
2
cos2x-
5
3
2
 
=5(
1
2
sin2x-
3
2
cos2x)-
5
3
2
=5sin(2x-
π
3
)-
5
3
2

∴①f(x)最小正周期T=π;
②由2kπ+
π
2
≤2x-
π
3
≤2kπ+
2
,k∈Z
,得kπ+
12
≤x≤kπ+
11π
12
,k∈Z

故f(x)的單調(diào)減區(qū)間為[kπ+
12
 ,  kπ+
11π
12
],k∈z.
③由2x-
π
3
=kπ+
π
2
(k∈Z)
,求得f(x)的對稱軸為x=
2
+
12
(k∈Z)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=5-
6x
,數(shù)列{an}滿足:a1=a,an+1=f(an),n∈N*
(1)若對于n∈N*,均有an+1=an成立,求實(shí)數(shù)a的值;
(2)若對于n∈N*,均有an+1>an成立,求實(shí)數(shù)a的取值范圍;
(3)請你構(gòu)造一個無窮數(shù)列{bn},使其滿足下列兩個條件,并加以證明:①bn<bn+1,n∈N*;②當(dāng)a為{bn}中的任意一項(xiàng)時,{an}中必有某一項(xiàng)的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(5-2a)x-1(x<1)
ax(x≥1)
(a>0,且a≠1)滿足對任意x1≠x2,都有
f(x1)-f(x2)
x1-x2
>0
成立,則實(shí)數(shù)a的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=5-4sin2(
π
4
+x)+2
3
cos2x
,且給定條件p:x<
π
4
或x>
π
2

(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;     
(2)在¬p的條件下,求f(x)的值域;
(3)若條件q:-2<f(x)-m<2,且¬p是q的充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•崇明縣二模)已知函數(shù)f(x)=5-
6
x
,數(shù)列{an}滿足:a1=a,an+1=f(an),n∈N*
(1)若對于n∈N*,都有an+1=an成立,求實(shí)數(shù)a的值;
(2)若對于n∈N*,都有an+1>an成立,求實(shí)數(shù)a的取值范圍;
(3)設(shè)數(shù)列{bn}滿足b1=
3
2
bn+1=
6
5-bn
.求證:當(dāng)a為數(shù)列{bn}中的任意一項(xiàng)時,數(shù)列{an}必有相應(yīng)一項(xiàng)的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=
5-2x,x>0
2,  x=0
-x-1, x<0
,
(Ⅰ)求f(f(-3))及f(1-log0.253)的值;
(Ⅱ)當(dāng)-5≤x<3時,在坐標(biāo)系中作出函數(shù)f(x)的圖象并求值域.

查看答案和解析>>

同步練習(xí)冊答案