分析 (Ⅰ)由$\left\{\begin{array}{l}{x=2-\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}$(t為參數(shù))消去參數(shù)可得直線l的普通方程,由ρ=2,兩端平方可得曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線C經(jīng)過伸縮變換$\left\{\begin{array}{l}{x′=x}\\{y′=2y}\end{array}$得到曲線C′的方程為x2+$\frac{{y}^{2}}{4}$=4,化為參數(shù)方程,則$\left\{\begin{array}{l}{{x}_{0}=2cosθ}\\{{y}_{0}=4sinθ}\end{array}\right.$(θ為參數(shù))代入$\sqrt{3}{x}_{0}$+$\frac{1}{2}{y}_{0}$即可求得取值范圍.
解答 解:(Ⅰ)由$\left\{\begin{array}{l}{x=2-\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}$(t為參數(shù))消去參數(shù)可得直線l的普通方程為:$\sqrt{3}$x+y-2$\sqrt{3}$-1=0
由ρ=2,兩端平方可得:曲線C的直角坐標(biāo)方程為x2+y2=4…(5分)
(Ⅱ)曲線C經(jīng)過伸縮變換$\left\{\begin{array}{l}{x′=x}\\{y′=2y}\end{array}\right.$得到曲線C′的方程為x2+$\frac{{y}^{2}}{4}$=4,
即$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{16}$=1 又點(diǎn)M在曲線C′上,則$\left\{\begin{array}{l}{{x}_{0}=2cosθ}\\{{y}_{0}=4sinθ}\end{array}\right.$(θ為參數(shù))
代入$\sqrt{3}$x0+$\frac{1}{2}$y0得:$\sqrt{3}$x0+$\frac{1}{2}$y0得=$\sqrt{3}$•2cosθ+$\frac{1}{2}$•4sinθ=2$\sqrt{3}$2osθ+2sinθ=4sin(θ+$\frac{π}{3}$),
所以$\sqrt{3}$x0+$\frac{1}{2}$y0的取值范圍是[-4,4]…(10分)
點(diǎn)評(píng) 本題考查參數(shù)方程化普通方程,考查三角函數(shù)恒等變換的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1005 | B. | 1006 | C. | 1007 | D. | 1008 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | $\frac{26}{4}$ | D. | $\frac{13}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | lg(x2+$\frac{1}{4}$)>lg x(x>0) | |
B. | sin x+$\frac{1}{sinx}$≥2(x≠kπ,k∈Z) | |
C. | 函數(shù) y=$\frac{x}{{x}^{2}+1}$,x∈(0,$\frac{3}{4}$)的最大值為$\frac{1}{2}$ | |
D. | x2+1≥2|x|(x∈R) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)有極大值f(-2)和極小值f(2) | B. | 函數(shù)f(x)有極大值f(-2)和極小值f(1) | ||
C. | 函數(shù)f(x)有極大值f(2)和極小值f(-2) | D. | 函數(shù)f(x)有極大值f(2)和極小值f(1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com