若a,b,c是不全等的正數(shù),給出下列判斷:

①(a-b)2+(b-c)2+(c-a)2≠0;

②a>b與a<b及a=b中至少有一個成立;

③a≠c,b≠c,a≠b不能同時成立.

其中正確判斷的個數(shù)為

[  ]
A.

0

B.

1

C.

2

D.

3

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

16、中學數(shù)學中存在許多關系,比如“相等關系”、“平行關系”等等、如果集合A中元素之間的一個關系“-”滿足以下三個條件:
(1)自反性:對于任意a∈A,都有a-a;
(2)對稱性:對于a,b∈A,若a-b,則有b-a;
(3)對稱性:對于a,b,c∈A,若a-b,b-c,則有a-c、
則稱“-”是集合A的一個等價關系、例如:“數(shù)的相等”是等價關系,而“直線的平行”不是等價關系(自反性不成立)、請你再列出兩個等價關系:
答案不唯一,如“圖形的全等”、“圖形的相似”、“非零向量的共線”、“命題的充要條件”等等

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網通常用a、b、c表示△ABC的三個內角∠A、∠B、∠C所對邊的邊長,R表示△ABC外接圓半徑.
(1)如圖所示,在以O為圓心,半徑為2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB的長;
(2)在△ABC中,若∠C是鈍角,求證:a2+b2<4R2
(3)給定三個正實數(shù)a、b、R,其中b≤a,問:a、b、R滿足怎樣的關系時,以a、b為邊長,R為外接圓半徑的△ABC不存在,存在一個或兩個(全等的三角形算作同一個)?在△ABC存在的情況下,用a、b、R表示c.

查看答案和解析>>

科目:高中數(shù)學 來源:學習周報 數(shù)學 北師大課標高二版(選修1-2) 2009-2010學年 第34期 總第190期 北師大課標 題型:013

若a,b,c是不全等的正數(shù),給出下列判斷:

①(a-b)2+(b-c)2+(c-a)2≠0;

②a>b與a<b及a=b中至少有一個成立;

③a≠c,b≠c,a≠b不能同時成立.

其中正確判斷的個數(shù)為

[  ]
A.

0

B.

1

C.

2

D.

3

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年湖北省武漢二中高一(上)期末數(shù)學試卷(解析版) 題型:解答題

通常用a、b、c表示△ABC的三個內角∠A、∠B、∠C所對邊的邊長,R表示△ABC外接圓半徑.
(1)如圖所示,在以O為圓心,半徑為2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB的長;
(2)在△ABC中,若∠C是鈍角,求證:a2+b2<4R2;
(3)給定三個正實數(shù)a、b、R,其中b≤a,問:a、b、R滿足怎樣的關系時,以a、b為邊長,R為外接圓半徑的△ABC不存在,存在一個或兩個(全等的三角形算作同一個)?在△ABC存在的情況下,用a、b、R表示c.

查看答案和解析>>

同步練習冊答案