設(shè)函數(shù),.
(Ⅰ)若,求的極小值;
(Ⅱ)在(Ⅰ)的結(jié)論下,是否存在實常數(shù)和,使得和?若存在,求出和的值.若不存在,說明理由.
(Ⅲ)設(shè)有兩個零點,且成等差數(shù)列,試探究值的符號.
(Ⅰ);(Ⅱ)存在這樣的k和m,且;(Ⅲ)的符號為正.
解析試題分析:(Ⅰ)首先由,得到關(guān)于的兩個方程,從而求出,這樣就可得到 的表達式,根據(jù)它的特點可想到用導(dǎo)數(shù)的方法求出的極小值; (Ⅱ)由(Ⅰ)中所求的和,易得到它們有一個公共的點,且和在這個點處有相同的切線,這樣就可將問題轉(zhuǎn)化為證明和分別在這條切線的上方和下方,兩線的上下方可轉(zhuǎn)化為函數(shù)與0的大小,即證和成立,從而得到和的值; (Ⅲ)由已知易得,由零點的意義,可得到關(guān)于兩個方程,根據(jù)結(jié)構(gòu)特征將兩式相減,得到關(guān)于的關(guān)系式,又對求導(dǎo),進而得到,結(jié)合上面關(guān)系可化簡得:,針對特征將當(dāng)作一個整體,可轉(zhuǎn)化為關(guān)于 的函數(shù),對其求導(dǎo)分析得,恒成立.
試題解析:解:(Ⅰ)由,得,解得 2分
則=,
利用導(dǎo)數(shù)方法可得的極小值為 5分
(Ⅱ)因與有一個公共點,而函數(shù)在點的切線方程為,
下面驗證都成立即可 7分
由,得,知恒成立 8分
設(shè),即,易知其在上遞增,在上遞減,
所以的最大值為,所以恒成立.
故存在這樣的k和m,且 10分
(Ⅲ)的符號為正. 理由為:因為有兩個零點,則有
,兩式相減得 12分
即,于是
14分
①當(dāng)時,令,則,且.
設(shè),則,則在
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)h(x)=ax2+bx+c(其中c<3),其導(dǎo)函數(shù)的圖象如圖,f(x)=6lnx+h(x)
(1)求f(x)在x=3處的切線斜率;
(2)若f(x)在區(qū)間(m,m+)上是單調(diào)函數(shù),求實數(shù)m的取值范圍;
(3)若對任意k∈[-1,1],函數(shù)y=kx(x∈(0,6])的圖象總在函數(shù)y=f(x)圖象的上方,求c的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)當(dāng)時,求在處的切線方程;
(2)若在內(nèi)單調(diào)遞增,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.
(Ⅲ)求證:(,e是自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),是大于零的常數(shù).
(Ⅰ)當(dāng)時,求的極值;
(Ⅱ)若函數(shù)在區(qū)間上為單調(diào)遞增,求實數(shù)的取值范圍;
(Ⅲ)證明:曲線上存在一點,使得曲線上總有兩點,且成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中,.
(Ⅰ)若的最小值為,試判斷函數(shù)的零點個數(shù),并說明理由;
(Ⅱ)若函數(shù)的極小值大于零,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在區(qū)間內(nèi)的最小值為,求的值.(參考數(shù)據(jù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)當(dāng),時,求函數(shù)的最大值;
(2)令,其圖象上存在一點,使此處切線的斜率,求實數(shù)的取值范圍;
(3)當(dāng),時,方程有唯一實數(shù)解,求正數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com