已知直線過點,當(dāng)直線與圓有兩個交點時,其斜率的取值范圍是 ______________________.

試題分析:因為已知直線過點(-2,0),那么圓的方程配方可知為
,表示的圓心為(1,0),半徑為1的圓,那么設(shè)過點(-2,0)的直線的斜率為k,直線方程為:y=k(x+2),則點到直線距離等于圓的半徑1,有

然后可知此時有一個交點,那么當(dāng)滿足題意的時候,且斜率為,故答案為。
點評:要求解直線與圓有兩個交點時的情況,先考慮臨界情況,那就是相切時,然后結(jié)合圖形,直線的傾斜角與斜率的關(guān)系,進(jìn)而分析得到。而后者的運用是解決該題的核心知識點。屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
如圖,是⊙的直徑,垂直于⊙所在的平面,是圓周上不同于的一動點.
 
(1)證明:面PAC面PBC;
(2)若,則當(dāng)直線與平面所成角正切值為時,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若過定點且斜率為的直線與圓在第一象限內(nèi)的部分有交點,則的取值范圍是(  ).
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線與圓相交于M、N兩點,若,則k的取值范圍為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓O的方程為,圓M的方程為,過圓M上任意一點P作圓O的切線PA,若直線PA與圓M的另一個交點為Q,則當(dāng)PQ的長度最大時,直線PA的斜率是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若圓上有且只有兩個不同點到直線的距離為1,則的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點,點是圓上任意一點,則面積的最大值是         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線和圓在同一坐標(biāo)系的圖形只能是(   )

A.                 B.                C.                D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.若過點的直線與曲線有公共點,則直線的斜率最小值為 ( )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案