(本題滿分12分)
如圖,是⊙的直徑,垂直于⊙所在的平面,是圓周上不同于的一動(dòng)點(diǎn).
 
(1)證明:面PAC面PBC;
(2)若,則當(dāng)直線與平面所成角正切值為時(shí),求直線與平面所成角的正弦值.
(1) 證明見(jiàn)解析;(2)與平面所成角正弦值為。

試題分析:(1) 證明略 ----------------6分
(2)如圖,過(guò),,

,則即是要求的角。…..8分

即是與平面所成角,…..9分
,又…..10分
中,,…..11分
中,,即與平面所成角正弦值為。..12分
點(diǎn)評(píng):典型題,立體幾何中線面關(guān)系與線線關(guān)系的相互轉(zhuǎn)化是高考重點(diǎn)考查內(nèi)容,角的計(jì)算問(wèn)題,要注意“一作、二證、三計(jì)算”。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

圓x2+y2+2x+4y-3=0上到直線4x-3y=2的距離為的點(diǎn)數(shù)共有______ 個(gè)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知直線過(guò)點(diǎn),當(dāng)直線與圓有兩個(gè)交點(diǎn)時(shí),其斜率的取值范圍是 ______________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分16分,第1小題4分,第2小題6分,第3小題6分)
設(shè)橢圓的中心為原點(diǎn)O,長(zhǎng)軸在x軸上,上頂點(diǎn)為A,左、右焦點(diǎn)分別為F1、F2,線段OF1OF2的中點(diǎn)分別為B1、B2,且△AB1B2是面積為的直角三角形.過(guò)1作直線l交橢圓于P、Q兩點(diǎn).
(1) 求該橢圓的標(biāo)準(zhǔn)方程;
(2) 若,求直線l的方程;
(3) 設(shè)直線l與圓Ox2+y2=8相交于MN兩點(diǎn),令|MN|的長(zhǎng)度為t,若t,求△B2PQ的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

上到直線的距離為的點(diǎn)的個(gè)數(shù)是   _ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知直線l:y=x,圓C1的圓心為(3,0),且經(jīng)過(guò)(4,1)點(diǎn).
(1)求圓C1的方程;
(2)若圓C2與圓C1關(guān)于直線l對(duì)稱,點(diǎn)A、B分別為圓C1、C2上任意一點(diǎn),求|AB|的最小值;
(3)已知直線l上一點(diǎn)M在第一象限,兩質(zhì)點(diǎn)P、Q同時(shí)從原點(diǎn)出發(fā),點(diǎn)P以每秒1個(gè)單位的速度沿x軸正方向運(yùn)動(dòng),點(diǎn)Q以每秒個(gè)單位沿射線OM方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.問(wèn):當(dāng)t為何值時(shí)直線PQ與圓C1相切?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本大題10分)求圓心在上,與軸相切,且被直線截得弦長(zhǎng)為的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

方程所表示的曲線的圖形是(   )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)平面直角坐標(biāo)系中,設(shè)二次函數(shù)的圖象與兩坐標(biāo)軸有三個(gè)交點(diǎn),經(jīng)過(guò)這三個(gè)交點(diǎn)的圓記為C.求:
(Ⅰ)求實(shí)數(shù)b 的取值范圍;
(Ⅱ)求圓C 的方程;

查看答案和解析>>

同步練習(xí)冊(cè)答案