已知函數(shù)f(x)=|log2x|,0<m<n,且f(m)=f(n),若函數(shù)f(x)在區(qū)間[m2,n]上的最大值為2,則m2=( 。
A、
1
4
B、
2
C、
3
2
D、
1
2
考點(diǎn):對(duì)數(shù)函數(shù)的圖像與性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得-log2m=log2n,從而化得mn=1;從而可得f(m2)=|log2m2|=-2log2m=2,從而解得.
解答: 解:∵f(m)=f(n),0<m<n;
∴-log2m=log2n;
故mn=1;
故函數(shù)f(x)在區(qū)間[m2,n]上的最大值為
f(m2)=|log2m2|=-2log2m=2;
故m=
1
2
,
故m2=
1
4
;
故選A.
點(diǎn)評(píng):本題考查了對(duì)數(shù)函數(shù)的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin2x+acos2x圖象的一條對(duì)稱軸是x=
π
12
,則下列說(shuō)法中正確的是( 。
A、f(x)的最大值為1-
3
B、f(x)在[0,
π
2
]上單調(diào)遞增
C、f(x)在[-
π
4
,0]上單調(diào)遞增
D、(
π
12
,0)為函數(shù)f(x)的對(duì)稱中心

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)字“1,2“組成一個(gè)四位數(shù),則數(shù)字“1,2“都出現(xiàn)的四位偶數(shù)有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=1,an-1-an=2an-1an (n∈N,N≥2).
(1)求證數(shù)列{
1
an
}是等差數(shù)列;
(2)求證數(shù)列{anan+1}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2和函數(shù)g(x)=sin4x,若f(x)的反函數(shù)為h(x),則h(x)與g(x)兩圖象交點(diǎn)的個(gè)數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)
2sinxcosx
(sinx+cosx-1)(sinx-cosx+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域?yàn)镽,則“f(x)在[-2,2]上單調(diào)遞增”是“f(-2)<f(2)”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinθ=
5
-1
4
,求
sinθ-cosθ
sinθ+cosθ
+
sinθ+cosθ
sinθ-cosθ
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若對(duì)任意實(shí)數(shù)x,都有f(x)=loga(2+ex-1)≤-1,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案