已知等差數(shù)列{an}和等比數(shù)列{bn}滿足:a1+b1=3,a2+b2=7,a3+b3=15,a4+b4=35,則a5+b5=
91
91
分析:分別利用等差數(shù)列的首 項(xiàng)a1,公差d,等比數(shù)列的首項(xiàng)b1及公比q表示已知條件,然后解方程可求a1,b1,d,q,然后結(jié)合等差與等比的通項(xiàng)即可求解
解答:解:∵a1+b1=3,①
a2+b2=a1+d+b1q=7,②
a3+b3=a1+2d+b1q2=15,③
a4+b4=a1+3d+b1q3=35④
②-①可得,4-d=b1(q-1)
③-②可得,8-d=b1q(q-1)
④-③可得,20-d=b1q2(q-1)
4-d
8-d
=
1
q
8-d
20-d
=
1
q

4-d
8-d
=
8-d
20-d

解方程可求d=2,q=3,b1=1,a1=2
∴a5+b5=10+81=91
故答案為:91
點(diǎn)評(píng):本題主要考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式的應(yīng)用,解決本題的關(guān)鍵是求解方程的技巧
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項(xiàng)公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;     
(2)求數(shù)列{|an|}的前n項(xiàng)和;
(3)求數(shù)列{
an2n-1
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若{an}為遞增數(shù)列,請(qǐng)根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫(xiě)出解答過(guò)程).

查看答案和解析>>

同步練習(xí)冊(cè)答案