已知曲線的極坐標方程為,曲線的極坐標方程為,曲線、相交于、兩點.(
(Ⅰ)求、兩點的極坐標;
(Ⅱ)曲線與直線為參數(shù))分別相交于兩點,求線段的長度.

(Ⅰ):;(Ⅱ).

解析試題分析:(Ⅰ)由 得:即可得到 .進而得到點 的極坐標.
(Ⅱ)由曲線 的極坐標方程化為,即可得到普通方程.將直線代入,整理得 .進而得到.
試題解析:(Ⅰ)由得: ,即    3分
所以、兩點的極坐標為:        5分
(Ⅱ)由曲線的極坐標方程得其普通方程為        6分
將直線代入,整理得       8分
所以
考點:1、點的極坐標和直角坐標的互化;2、參數(shù)方程化成普通方程.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,橢圓與橢圓中心在原點,焦點均在軸上,且離心率相同.橢圓的長軸長為,且橢圓的左準線被橢圓截得的線段長為,已知點是橢圓上的一個動點.

⑴求橢圓與橢圓的方程;
⑵設點為橢圓的左頂點,點為橢圓的下頂點,若直線剛好平分,求點的坐標;
⑶若點在橢圓上,點滿足,則直線與直線的斜率之積是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,橢圓經(jīng)過點,其左、右頂點分別是、,左、右焦點分別是,(異于、)是橢圓上的動點,連接交直線、兩點,若成等比數(shù)列.

(Ⅰ)求此橢圓的離心率;
(Ⅱ)求證:以線段為直徑的圓過點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓兩焦點坐標分別為,,一個頂點為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)是否存在斜率為的直線,使直線與橢圓交于不同的兩點,滿足. 若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知過點的橢圓的右焦點為,過焦點且與軸不重合的直線與橢圓交于兩點,點關(guān)于坐標原點的對稱點為,直線分別交橢圓的右準線,兩點.

(1)求橢圓的標準方程;
(2)若點的坐標為,試求直線的方程;
(3)記,兩點的縱坐標分別為,,試問是否為定值?若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點,,動點滿足
(1)求動點的軌跡的方程;
(2)在直線上取一點,過點作軌跡的兩條切線,切點分別為.問:是否存在點,使得直線//?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知拋物線和⊙,過拋物線上一點作兩條直線與⊙相切于、兩點,分別交拋物線為E、F兩點,圓心點到拋物線準線的距離為

(1)求拋物線的方程;
(2)當的角平分線垂直軸時,求直線的斜率;
(3)若直線軸上的截距為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知為橢圓的左、右焦點,且點在橢圓上.
(1)求橢圓的方程;
(2)過的直線交橢圓兩點,則的內(nèi)切圓的面積是否存在最大值?
若存在其最大值及此時的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知橢圓的方程為,雙曲線的兩條漸近線為.過橢圓的右焦點作直線,使,又交于點,設與橢圓的兩個交點由上至下依次為.

(1)若的夾角為,且雙曲線的焦距為,求橢圓的方程;
(2)求的最大值.

查看答案和解析>>

同步練習冊答案