已知函數(shù)f(x)=alnx-
1x
,a∈R

(I)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x+2y=0垂直,求a的值;
(II)求函數(shù)f(x)的單調(diào)區(qū)間.
分析:(I)求得函數(shù)f(x)的定義域,求導(dǎo)函數(shù),利用曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x+2y=0垂直,即可求a的值;
(II)由于f′(x)=
ax+1
x2
,分類(lèi)討論,利用導(dǎo)數(shù)的正負(fù),可得函數(shù)的單調(diào)區(qū)間.
解答:解:(I)函數(shù)f(x)的定義域?yàn)閧x|x>0},f′(x)=
a
x
+
1
x2

又曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x+2y=0垂直,所以f′(1)=a+1=2.解得a=1.
(II)由于f′(x)=
ax+1
x2

當(dāng)a≥0時(shí),對(duì)于x∈(0,+∞),有f′(x)>0在定義域上恒成立,即f(x)在(0,+∞)上是增函數(shù).
當(dāng)a<0時(shí),由f′(x)=0,得x=-
1
a
∈(0,+∞);
當(dāng)x∈(0,-
1
a
)時(shí),f′(x)>0,f(x)單調(diào)遞增;
當(dāng)x∈(-
1
a
,+∞)
時(shí),f′(x)<0,f(x)單調(diào)遞減.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-
12x+1

(1)求證:不論a為何實(shí)數(shù)f(x)總是為增函數(shù);
(2)確定a的值,使f(x)為奇函數(shù);
(3)當(dāng)f(x)為奇函數(shù)時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)圖象經(jīng)過(guò)點(diǎn)Q(8,6).
(1)求a的值,并在直線坐標(biāo)系中畫(huà)出函數(shù)f(x)的大致圖象;
(2)求函數(shù)f(t)-9的零點(diǎn);
(3)設(shè)q(t)=f(t+1)-f(t)(t∈R),求函數(shù)q(t)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-
1
2x+1
,若f(x)為奇函數(shù),則a=( 。
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a(x-1)x2
,其中a>0.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若直線x-y-1=0是曲線y=f(x)的切線,求實(shí)數(shù)a的值;
(III)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定義域;
(2)若f(x)為奇函數(shù),求a的值;
(3)考察f(x)在定義域上單調(diào)性的情況,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案