(本題14分)已知函數(shù),.
(1)若曲線在點(diǎn)處的切線垂直于軸,求實(shí)數(shù)的值;
(2)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值和最小值.
已知函數(shù),.
(1)若曲線在點(diǎn)處的切線垂直于軸,求實(shí)數(shù)的值;
(2)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值和最小值.
解:(Ⅰ)
=
=. --------------4分
∵曲線在點(diǎn)處的切線垂直于y軸,
由導(dǎo)數(shù)的幾何意義得,
∴. ---------------6分
(Ⅱ)令,解得或.
∵,∴.
當(dāng)變化時(shí),與的變化情況如下表:
0 | 0 | ||||
單調(diào)遞增 | 極大值 | 單調(diào)遞減 | 極小值 | 單調(diào)遞增 |
函數(shù)在和上單調(diào)遞增;在上單調(diào)遞減;
----------------8分
當(dāng),即 時(shí),函數(shù)在上為減函數(shù).
, . ---------------10分
當(dāng),即 時(shí),函數(shù)的極小值為上的最小值,
∴ .
函數(shù)在上的最大值為與中的較大者.
∵,.
∴當(dāng)時(shí),,此時(shí);
當(dāng)時(shí),,此時(shí);
當(dāng)時(shí),,此時(shí). -------------13分
綜上,
當(dāng)時(shí),的最小值為,最大值為;
當(dāng)時(shí),的最小值為,最大值為;
當(dāng)時(shí),的最小值為,最大值為. ------14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆湖南省高一12月月考數(shù)學(xué) 題型:解答題
(本題滿分14分)定義在D上的函數(shù),如果滿足;對任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界。
已知函數(shù),
(1)當(dāng)時(shí),求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請說明理由;
(2)若函數(shù)在上是以3為上界函數(shù)值,求實(shí)數(shù)的取值范圍;
(3)若,求函數(shù)在上的上界T的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆湖南省高一12月月考數(shù)學(xué) 題型:解答題
(本題滿分14分)定義在D上的函數(shù),如果滿足;對任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界。
已知函數(shù),
(1)當(dāng)時(shí),求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請說明理由;
(2)若函數(shù)在上是以3為上界函數(shù)值,求實(shí)數(shù)的取值范圍;
(3)若,求函數(shù)在上的上界T的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com