15.若三點(diǎn)A(3,3),B(a,0).C(0,b)(ab≠0)共線,則log3($\frac{1}{a}$+$\frac{1}$)=-1.

分析 利用三點(diǎn)共線求出a、b關(guān)系,然后求解表達(dá)式的值.

解答 解:三點(diǎn)A(3,3),B(a,0).C(0,b)(ab≠0)共線,
$\overrightarrow{AB}$=(a-3,-3),$\overrightarrow{AC}$=(-3,b-3),
可得:(a-3)(b-3)=9.,即ab=3(a+b).
log3($\frac{1}{a}$+$\frac{1}$)=log3($\frac{a+b}{ab}$)=log3$\frac{1}{3}$=-1.
故答案為:-1.

點(diǎn)評(píng) 本題考查對(duì)數(shù)運(yùn)算法則的應(yīng)用,向量共線的充要條件,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.對(duì)任意實(shí)數(shù)x都有mx2+mx+1>0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.某人外出參加活動(dòng),他乘火車、輪船、汽車、飛機(jī)去的概率分別為0.3,0.1,0.4,0.2,他不乘輪船去的概率是0.9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若函數(shù)fA(x)的定義域?yàn)锳=[a,b),且fA(x)=($\frac{x}{a}$+$\frac{x}$-1)2-$\frac{2b}{a}$+1,其中a,b為任意正實(shí)數(shù),且a<b.
(1)求函數(shù)fA(x)的最小值和最大值;
(2)若x1∈Ik=[k2,(k+1)2),x2∈Ik+1=[(k+1)2,(k+2)2),其中k是正整數(shù),對(duì)一切正整數(shù)k,不等式f${\;}_{I_k}}$(x1)+f${\;}_{{I_{k+1}}}}$(x2))<m都有解,求m的取值范圍;
(3)若對(duì)任意x1,x2,x3∈A,都有$\sqrt{{f_A}({x_1})}$,$\sqrt{{f_A}({x_2})}$,$\sqrt{{f_A}({x_3})}$為三邊長(zhǎng)構(gòu)成三角形,求$\frac{a}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)y=$\sqrt{3x+6}$-$\sqrt{8-x}$值域?yàn)閇-$\sqrt{10}$,$\sqrt{30}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求下列函數(shù)的定義域:
(1)y=log3$\frac{1}{2-x}$;
(2)y=$\sqrt{lgx}$+lg(5-3x);
(3)y=log(x-1)(2-x);
(4)y=$\sqrt{lo{g}_{2}(4x-3)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若a>0,b>0,且函數(shù)f(x)=4x3-ax2-2bx在x=1處有極值,則$\frac{4}{a}$+$\frac{1}$的最小值為( 。
A.$\frac{4}{9}$B.$\frac{4}{3}$C.$\frac{3}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知a>0,函數(shù)f(x)=x3-ax在[1,+∞)上是單調(diào)遞增函數(shù),則a的取值范圍是(0,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若集合M={x|x>1},N={x|x<5},則集合M∩N=( 。
A.{2,3,4}B.{x|x>1}C.{x|x<5}D.(1,5)

查看答案和解析>>

同步練習(xí)冊(cè)答案