如圖,正四棱柱ABCD-A1B1C1D1中,底面邊長為,側棱長為4,E、F分別是棱AB,BC的中點,EF與BD相交于G.
(1)求證:平面EFB1⊥平面BDD1B1;
(2)求點B到平面B1EF的距離.

【答案】分析:(1)要證面EFB1⊥面BDD1B1,可先證明EF⊥平面BDD1B1,證出 EF⊥BD,EF⊥BB1即可.
(2)在平面BDD1B1中,作BH⊥B1G于為H,說明BH⊥面B1EF,BH就是點B到平面B1EF的距離,在Rt△B1BG中利用等面積法求出BH.
解答:解:(1)證明:∵EF∥AC,AC⊥BD,∴EF⊥BD,根據(jù)正四棱柱的性質(zhì)EF⊥BB1,BD∩BB1=B,可知EF⊥平面BDD1B1,…(3分)
又EF?面B1EF,∴面EFB1⊥面BDD1B1…(7分)
(2)可知∴面EFB1⊥面BDD1B1,在平面BDD1B1中,作BH⊥B1G于為H,∵面EFB1⊥面BDD1B1,面EFB1∩面BDD1B1=B1G
∴BH⊥面B1EF,BH就是點B到平面B1EF的距離…(10分)
在Rt△B1BG中,B1B=4,BG=1,BH⊥B1G⇒BH=…(12分)
點評:本題考查線面垂直,面面垂直的定義,性質(zhì)、判定,空間距離的計算.考查了空間想象能力、計算能力,分析解決問題能力.空間問題平面化是解決空間幾何體問題最主要的思想方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N為棱AB中點.
(1)求證:AC1∥平面CNB1;
(2)求四棱錐C1-ANB1A1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆安徽省高二上學期期中考試理科數(shù)學 題型:解答題

(本小題滿分12分)如圖是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N為棱AB的中點.

(1)求證:AC1∥平面CNB1;

(2)求四棱錐C-ANB1A1的體積.

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N為棱AB中點.
(1)求證:AC1∥平面CNB1;
(2)求四棱錐C1-ANB1A1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:安徽省期中題 題型:解答題

如圖是正三棱柱ABC﹣A1B1C1,AA1=3,AB=2,若N為棱AB中點.
(1)求證:AC1∥平面CNB1;
(2)求四棱錐C1﹣ANB1A1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:安徽省期中題 題型:解答題

如圖是正三棱柱ABC﹣A1B1C1,AA1=3,AB=2,若N為棱AB中點.
(1)求證:AC1∥平面CNB1;
(2)求四棱錐C1﹣ANB1A1的體積.

查看答案和解析>>

同步練習冊答案