精英家教網 > 高中數學 > 題目詳情
已知點及拋物線上的動點,則的最小值為______.
2

試題分析:設拋物線的焦點為F(0,1),由拋物線的知:,所以的最小值為.
點評:把“的最小值”應用拋物線的定義轉化為“”,是解題的關鍵,考查了學生分析問題、解決問題的能力。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,,是拋物線(為正常數)上的兩個動點,直線AB與x軸交于點P,與y軸交于點Q,且

(Ⅰ)求證:直線AB過拋物線C的焦點;
(Ⅱ)是否存在直線AB,使得若存在,求出直線AB的方程;若不存在,請說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若雙曲線的一條漸近線方程為,則此雙曲線的離心率是____________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知橢圓方程為),F(-c,0)和F(c,0)分別是橢圓的左 右焦點.
①若P是橢圓上的動點,延長到M,使=,則M的軌跡是圓;
②若P是橢圓上的動點,則;
③以焦點半徑為直徑的圓必與以長軸為直徑的圓內切;
④若在橢圓上,則過的橢圓的切線方程是;
⑤點P為橢圓上任意一點,則橢圓的焦點角形的面積為.
以上說法中,正確的有                

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知動點的距離比它到軸的距離多一個單位.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)過點作曲線的切線,求切線的方程,并求出與曲線軸所圍成圖形的面積

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的頂點與雙曲線的焦點重合,它們的離心率之和為,若橢圓的焦點在軸上,求橢圓的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設F1、F2為橢圓的左、右焦點,過橢圓中心任作一直線與橢圓交于P、Q 兩點,當四邊形PF1QF2面積最大時,的值等于(    )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

與橢圓共焦點且過點(5,-2)的雙曲線標準方程是
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設AB是平面的斜線段,A為斜足,若點P在平面內運動,使得△ABP的面積為定值,則動點P的軌跡是     

查看答案和解析>>

同步練習冊答案