15.橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$的離心率的值為$\frac{1}{2}$.

分析 求出橢圓的長軸與焦距,然后求解離心率即可.

解答 解:橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$,可得a=2,c=1.
所以橢圓的離心率為:$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點(diǎn)評 本題考查橢圓的離心率的求法,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列各組函數(shù)表示相同函數(shù)的是( 。
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2B.f(x)=1,g(x)=x2
C.f(x)=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$,g(t)=|t|D.f(x)=x+1,g(x)=$\frac{{x}^{2}-1}{x-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=4+2ax-1(a>0且a≠1)的圖象恒過定點(diǎn)P,則點(diǎn)P的坐標(biāo)是( 。
A.(1,6)B.(1,5)C.(0,5)D.(5,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的右焦點(diǎn)為F,右頂點(diǎn)為A,已知$\frac{|FA|}{|OF|}+\frac{|FA|}{|OA|}=e$,其中O為原點(diǎn),e為橢圓的離心率.
(Ⅰ)求a的值;
(Ⅱ)動(dòng)直線l過點(diǎn)N(-2,0),l與橢圓E交于P,Q兩點(diǎn),求△OPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知A,B是球O的球面上兩點(diǎn),∠AOB=60°,C為該球面上的動(dòng)點(diǎn),若三棱錐O-ABC體積的最大值為$18\sqrt{3}$,則球O的體積為( 。
A.81πB.128πC.144πD.288π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知正數(shù)x,y滿足$\frac{2}{x}+\frac{1}{y}=1$,若x+y+a>0恒成立,則實(shí)數(shù)a的取值范圍是(-3-2$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.下列結(jié)論正確的命題有②; (填寫所有正確命題的編號)
①若直線l∥平面α,直線l∥平面β,則α∥β,
②若直線l⊥平面α,直線l⊥平面β,則α∥β,
③若兩直線l1、l2與平面α所成的角相等,則l1∥l2,
④若直線l上兩個(gè)不同的點(diǎn)A、B到平面α的距離相等,則l∥α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為e,一條漸近線的斜率為k(k>0),若e=2k,則這條漸近線的傾斜角為( 。
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列結(jié)論不正確的是( 。
A.0∈NB.$\frac{1}{2}$∈QC.$\sqrt{2}$∉RD.-1∈Z

查看答案和解析>>

同步練習(xí)冊答案